Source code for csle_agents.agents.bayesian_optimization.bayes_opt_agent

from typing import Union, List, Dict, Optional, Any
import math
import time
import gymnasium as gym
import os
import numpy as np
import numpy.typing as npt
from bayes_opt import BayesianOptimization
from bayes_opt import UtilityFunction
import gym_csle_stopping_game.constants.constants as env_constants
from csle_common.dao.emulation_config.emulation_env_config import EmulationEnvConfig
from csle_common.dao.simulation_config.simulation_env_config import SimulationEnvConfig
from csle_common.dao.training.experiment_config import ExperimentConfig
from csle_common.dao.training.experiment_execution import ExperimentExecution
from csle_common.dao.training.experiment_result import ExperimentResult
from csle_common.dao.training.agent_type import AgentType
from csle_common.dao.training.player_type import PlayerType
from csle_common.util.experiment_util import ExperimentUtil
from csle_common.logging.log import Logger
from csle_common.dao.training.multi_threshold_stopping_policy import MultiThresholdStoppingPolicy
from csle_common.dao.training.linear_threshold_stopping_policy import LinearThresholdStoppingPolicy
from csle_common.metastore.metastore_facade import MetastoreFacade
from csle_common.dao.jobs.training_job_config import TrainingJobConfig
from csle_common.util.general_util import GeneralUtil
from csle_common.dao.training.policy_type import PolicyType
from csle_common.dao.simulation_config.base_env import BaseEnv
from csle_agents.agents.base.base_agent import BaseAgent
import csle_agents.constants.constants as agents_constants
from csle_agents.common.objective_type import ObjectiveType


[docs]class BayesOptAgent(BaseAgent): """ Bayesian Optimization Agent """ def __init__(self, simulation_env_config: SimulationEnvConfig, emulation_env_config: Union[None, EmulationEnvConfig], experiment_config: ExperimentConfig, env: Optional[BaseEnv] = None, training_job: Optional[TrainingJobConfig] = None, save_to_metastore: bool = True): """ Initializes the Bayesian Optimization Agent :param simulation_env_config: the simulation env config :param emulation_env_config: the emulation env config :param experiment_config: the experiment config :param env: (optional) the gym environment to use for simulation :param training_job: (optional) a training job configuration :param save_to_metastore: boolean flag that can be set to avoid saving results and progress to the metastore """ super().__init__(simulation_env_config=simulation_env_config, emulation_env_config=emulation_env_config, experiment_config=experiment_config) assert experiment_config.agent_type == AgentType.BAYESIAN_OPTIMIZATION self.env = env self.training_job = training_job self.save_to_metastore = save_to_metastore
[docs] def train(self) -> ExperimentExecution: """ Performs the policy training for the given random seeds using Bayesian Optimization :return: the training metrics and the trained policies """ pid = os.getpid() # Initialize metrics exp_result = ExperimentResult() exp_result.plot_metrics.append(agents_constants.COMMON.AVERAGE_RETURN) exp_result.plot_metrics.append(agents_constants.COMMON.RUNNING_AVERAGE_RETURN) exp_result.plot_metrics.append(env_constants.ENV_METRICS.INTRUSION_LENGTH) exp_result.plot_metrics.append(agents_constants.COMMON.RUNNING_AVERAGE_INTRUSION_LENGTH) exp_result.plot_metrics.append(env_constants.ENV_METRICS.INTRUSION_START) exp_result.plot_metrics.append(agents_constants.COMMON.RUNNING_AVERAGE_INTRUSION_START) exp_result.plot_metrics.append(env_constants.ENV_METRICS.TIME_HORIZON) exp_result.plot_metrics.append(agents_constants.COMMON.RUNNING_AVERAGE_TIME_HORIZON) exp_result.plot_metrics.append(env_constants.ENV_METRICS.AVERAGE_UPPER_BOUND_RETURN) exp_result.plot_metrics.append(env_constants.ENV_METRICS.AVERAGE_DEFENDER_BASELINE_STOP_ON_FIRST_ALERT_RETURN) exp_result.plot_metrics.append(agents_constants.COMMON.RUNTIME) for l in range(1, self.experiment_config.hparams[agents_constants.BAYESIAN_OPTIMIZATION.L].value + 1): exp_result.plot_metrics.append(f"{env_constants.ENV_METRICS.STOP}_{l}") exp_result.plot_metrics.append(f"{env_constants.ENV_METRICS.STOP}_running_average_{l}") descr = f"Training of policies with the Bayesian Optimization algorithm using " \ f"simulation:{self.simulation_env_config.name}" for seed in self.experiment_config.random_seeds: exp_result.all_metrics[seed] = {} exp_result.all_metrics[seed][agents_constants.BAYESIAN_OPTIMIZATION.THETAS] = [] exp_result.all_metrics[seed][agents_constants.COMMON.AVERAGE_RETURN] = [] exp_result.all_metrics[seed][agents_constants.COMMON.RUNNING_AVERAGE_RETURN] = [] exp_result.all_metrics[seed][agents_constants.BAYESIAN_OPTIMIZATION.THRESHOLDS] = [] if self.experiment_config.player_type == PlayerType.DEFENDER: for l in range(1, self.experiment_config.hparams[agents_constants.BAYESIAN_OPTIMIZATION.L].value + 1): exp_result.all_metrics[seed][ f"{agents_constants.BAYESIAN_OPTIMIZATION.STOP_DISTRIBUTION_DEFENDER}_l={l}"] = [] else: for s in self.simulation_env_config.state_space_config.states: for l in range(1, self.experiment_config.hparams[agents_constants.BAYESIAN_OPTIMIZATION.L].value + 1): exp_result.all_metrics[seed][agents_constants.BAYESIAN_OPTIMIZATION.STOP_DISTRIBUTION_ATTACKER + f"_l={l}_s={s.id}"] = [] exp_result.all_metrics[seed][agents_constants.COMMON.RUNNING_AVERAGE_INTRUSION_START] = [] exp_result.all_metrics[seed][agents_constants.COMMON.RUNNING_AVERAGE_TIME_HORIZON] = [] exp_result.all_metrics[seed][agents_constants.COMMON.RUNNING_AVERAGE_INTRUSION_LENGTH] = [] exp_result.all_metrics[seed][env_constants.ENV_METRICS.INTRUSION_START] = [] exp_result.all_metrics[seed][env_constants.ENV_METRICS.INTRUSION_LENGTH] = [] exp_result.all_metrics[seed][env_constants.ENV_METRICS.TIME_HORIZON] = [] exp_result.all_metrics[seed][env_constants.ENV_METRICS.AVERAGE_UPPER_BOUND_RETURN] = [] exp_result.all_metrics[seed][ env_constants.ENV_METRICS.AVERAGE_DEFENDER_BASELINE_STOP_ON_FIRST_ALERT_RETURN] = [] for l in range(1, self.experiment_config.hparams[agents_constants.BAYESIAN_OPTIMIZATION.L].value + 1): exp_result.all_metrics[seed][f"{env_constants.ENV_METRICS.STOP}_{l}"] = [] exp_result.all_metrics[seed][f"{env_constants.ENV_METRICS.STOP}_running_average_{l}"] = [] exp_result.all_metrics[seed][agents_constants.COMMON.RUNTIME] = [] # Initialize training job if self.training_job is None: emulation_name = "" if self.emulation_env_config is not None: emulation_name = self.emulation_env_config.name self.training_job = TrainingJobConfig( simulation_env_name=self.simulation_env_config.name, experiment_config=self.experiment_config, progress_percentage=0, pid=pid, experiment_result=exp_result, emulation_env_name=emulation_name, simulation_traces=[], num_cached_traces=agents_constants.COMMON.NUM_CACHED_SIMULATION_TRACES, log_file_path=Logger.__call__().get_log_file_path(), descr=descr, physical_host_ip=GeneralUtil.get_host_ip()) if self.save_to_metastore: training_job_id = MetastoreFacade.save_training_job(training_job=self.training_job) self.training_job.id = training_job_id else: self.training_job.pid = pid self.training_job.progress_percentage = 0 self.training_job.experiment_result = exp_result if self.save_to_metastore: MetastoreFacade.update_training_job(training_job=self.training_job, id=self.training_job.id) # Initialize execution result ts = time.time() emulation_name = "" if self.emulation_env_config is not None: emulation_name = self.emulation_env_config.name simulation_name = self.simulation_env_config.name self.exp_execution = ExperimentExecution( result=exp_result, config=self.experiment_config, timestamp=ts, emulation_name=emulation_name, simulation_name=simulation_name, descr=descr, log_file_path=self.training_job.log_file_path) if self.save_to_metastore: exp_execution_id = MetastoreFacade.save_experiment_execution(self.exp_execution) self.exp_execution.id = exp_execution_id config = self.simulation_env_config.simulation_env_input_config if self.env is None: self.env = gym.make(self.simulation_env_config.gym_env_name, config=config) for seed in self.experiment_config.random_seeds: ExperimentUtil.set_seed(seed) exp_result = self.bayesian_optimization(exp_result=exp_result, seed=seed, training_job=self.training_job, random_seeds=self.experiment_config.random_seeds) # Save latest trace if self.save_to_metastore: MetastoreFacade.save_simulation_trace(self.env.get_traces()[-1]) self.env.reset_traces() # Calculate average and std metrics exp_result.avg_metrics = {} exp_result.std_metrics = {} for metric in exp_result.all_metrics[self.experiment_config.random_seeds[0]].keys(): value_vectors = [] for seed in self.experiment_config.random_seeds: value_vectors.append(exp_result.all_metrics[seed][metric]) avg_metrics = [] std_metrics = [] for i in range(len(value_vectors[0])): if type(value_vectors[0][0]) is int or type(value_vectors[0][0]) is float \ or type(value_vectors[0][0]) is np.int64 or type(value_vectors[0][0]) is np.float64: seed_values = [] for seed_idx in range(len(self.experiment_config.random_seeds)): if i < len(value_vectors[seed_idx]): seed_values.append(value_vectors[seed_idx][i]) avg = ExperimentUtil.mean_confidence_interval( data=seed_values, confidence=self.experiment_config.hparams[agents_constants.COMMON.CONFIDENCE_INTERVAL].value)[0] if not math.isnan(avg): avg_metrics.append(avg) ci = ExperimentUtil.mean_confidence_interval( data=seed_values, confidence=self.experiment_config.hparams[agents_constants.COMMON.CONFIDENCE_INTERVAL].value)[1] if not math.isnan(ci): std_metrics.append(ci) else: std_metrics.append(-1) else: avg_metrics.append(-1) std_metrics.append(-1) exp_result.avg_metrics[metric] = avg_metrics exp_result.std_metrics[metric] = std_metrics traces = self.env.get_traces() if len(traces) > 0 and self.save_to_metastore: MetastoreFacade.save_simulation_trace(traces[-1]) ts = time.time() self.exp_execution.timestamp = ts self.exp_execution.result = exp_result if self.save_to_metastore: MetastoreFacade.update_experiment_execution(experiment_execution=self.exp_execution, id=self.exp_execution.id) return self.exp_execution
[docs] def hparam_names(self) -> List[str]: """ :return: a list with the hyperparameter names """ return [agents_constants.BAYESIAN_OPTIMIZATION.N, agents_constants.BAYESIAN_OPTIMIZATION.L, agents_constants.BAYESIAN_OPTIMIZATION.THETA1, agents_constants.BAYESIAN_OPTIMIZATION.UTILITY_FUNCTION, agents_constants.BAYESIAN_OPTIMIZATION.UCB_KAPPA, agents_constants.BAYESIAN_OPTIMIZATION.UCB_XI, agents_constants.BAYESIAN_OPTIMIZATION.PARAMETER_BOUNDS, agents_constants.COMMON.EVAL_BATCH_SIZE, agents_constants.COMMON.CONFIDENCE_INTERVAL, agents_constants.COMMON.RUNNING_AVERAGE]
[docs] def bayesian_optimization(self, exp_result: ExperimentResult, seed: int, training_job: TrainingJobConfig, random_seeds: List[int]) -> ExperimentResult: """ Runs the Bayesian Optimization algorithm :param exp_result: the experiment result object to store the result :param seed: the seed :param training_job: the training job config :param random_seeds: list of seeds :return: the updated experiment result and the trained policy """ start: float = time.time() objective_type = self.experiment_config.hparams[agents_constants.BAYESIAN_OPTIMIZATION.OBJECTIVE_TYPE].value L = self.experiment_config.hparams[agents_constants.BAYESIAN_OPTIMIZATION.L].value if agents_constants.BAYESIAN_OPTIMIZATION.THETA1 in self.experiment_config.hparams: theta = self.experiment_config.hparams[agents_constants.BAYESIAN_OPTIMIZATION.THETA1].value else: if self.experiment_config.player_type == PlayerType.DEFENDER: theta = BayesOptAgent.initial_theta(L=L) else: theta = BayesOptAgent.initial_theta(L=2 * L) # Initial eval policy = self.get_policy(theta=list(theta), L=L) if self.env is not None: if self.experiment_config.player_type == PlayerType.DEFENDER: self.env.static_defender_strategy = policy if self.experiment_config.player_type == PlayerType.ATTACKER: self.env.static_attacker_strategy = policy avg_metrics = self.eval_theta( policy=policy, max_steps=self.experiment_config.hparams[agents_constants.COMMON.MAX_ENV_STEPS].value) J = round(avg_metrics[env_constants.ENV_METRICS.RETURN], 3) policy.avg_R = J exp_result.all_metrics[seed][agents_constants.COMMON.AVERAGE_RETURN].append(J) exp_result.all_metrics[seed][agents_constants.COMMON.RUNNING_AVERAGE_RETURN].append(J) exp_result.all_metrics[seed][agents_constants.BAYESIAN_OPTIMIZATION.THETAS].append( BayesOptAgent.round_vec(theta)) time_elapsed_minutes = round((time.time() - start) / 60, 3) exp_result.all_metrics[seed][agents_constants.COMMON.RUNTIME].append(time_elapsed_minutes) # Hyperparameters N = self.experiment_config.hparams[agents_constants.BAYESIAN_OPTIMIZATION.N].value parameter_bounds = self.experiment_config.hparams[agents_constants.BAYESIAN_OPTIMIZATION.PARAMETER_BOUNDS].value parameter_bounds_dict = {} for i, bound in enumerate(parameter_bounds): parameter_bounds_dict[f"param_{i}"] = bound optimizer = BayesianOptimization( f=None, pbounds=parameter_bounds_dict, verbose=0, random_state=seed, ) if self.experiment_config.hparams[agents_constants.BAYESIAN_OPTIMIZATION.UTILITY_FUNCTION].value \ == agents_constants.BAYESIAN_OPTIMIZATION.UCB: utility = UtilityFunction( kind=agents_constants.BAYESIAN_OPTIMIZATION.UCB, kappa=self.experiment_config.hparams[agents_constants.BAYESIAN_OPTIMIZATION.UCB_KAPPA].value, xi=self.experiment_config.hparams[agents_constants.BAYESIAN_OPTIMIZATION.UCB_XI].value) else: raise ValueError( f"Utility function: " f"{self.experiment_config.hparams[agents_constants.BAYESIAN_OPTIMIZATION.UTILITY_FUNCTION].value} " f"not recognized") for i in range(N): theta_candidate = optimizer.suggest(utility) theta = BayesOptAgent.get_theta_vector_from_param_dict(param_dict=theta_candidate) candidate_policy = self.get_policy(theta=list(theta), L=L) avg_metrics = self.eval_theta( policy=candidate_policy, max_steps=self.experiment_config.hparams[agents_constants.COMMON.MAX_ENV_STEPS].value) J_candidate = round(avg_metrics[env_constants.ENV_METRICS.RETURN], 3) if objective_type == ObjectiveType.MIN: J_candidate = - J_candidate try: optimizer.register(params=theta_candidate, target=J_candidate) J = -optimizer.max[agents_constants.BAYESIAN_OPTIMIZATION.TARGET] except Exception as e: Logger.__call__().get_logger().info( f"Exception, candidate:{theta_candidate}, exception: {str(e)}, {repr(e)}") continue # Log average return policy = self.get_policy(theta=list(BayesOptAgent.get_theta_vector_from_param_dict( optimizer.max[agents_constants.BAYESIAN_OPTIMIZATION.PARAMS])), L=L) policy.avg_R = J running_avg_J = ExperimentUtil.running_average( exp_result.all_metrics[seed][agents_constants.COMMON.AVERAGE_RETURN], self.experiment_config.hparams[agents_constants.COMMON.RUNNING_AVERAGE].value) exp_result.all_metrics[seed][agents_constants.COMMON.AVERAGE_RETURN].append(J) exp_result.all_metrics[seed][agents_constants.COMMON.RUNNING_AVERAGE_RETURN].append(running_avg_J) # Log runtime time_elapsed_minutes = round((time.time() - start) / 60, 3) exp_result.all_metrics[seed][agents_constants.COMMON.RUNTIME].append(time_elapsed_minutes) # Log thetas exp_result.all_metrics[seed][agents_constants.BAYESIAN_OPTIMIZATION.THETAS].append( BayesOptAgent.round_vec(theta)) if self.experiment_config.hparams[agents_constants.BAYESIAN_OPTIMIZATION.POLICY_TYPE] \ == PolicyType.MULTI_THRESHOLD: # Log thresholds exp_result.all_metrics[seed][agents_constants.BAYESIAN_OPTIMIZATION.THRESHOLDS].append( BayesOptAgent.round_vec(policy.thresholds())) # Log stop distribution for k, v in policy.stop_distributions().items(): exp_result.all_metrics[seed][k].append(v) # Log intrusion lengths if env_constants.ENV_METRICS.INTRUSION_LENGTH in exp_result.all_metrics: exp_result.all_metrics[seed][env_constants.ENV_METRICS.INTRUSION_LENGTH].append( round(avg_metrics[env_constants.ENV_METRICS.INTRUSION_LENGTH], 3)) if agents_constants.COMMON.RUNNING_AVERAGE_INTRUSION_LENGTH in exp_result.all_metrics: exp_result.all_metrics[seed][agents_constants.COMMON.RUNNING_AVERAGE_INTRUSION_LENGTH].append( ExperimentUtil.running_average( exp_result.all_metrics[seed][env_constants.ENV_METRICS.INTRUSION_LENGTH], self.experiment_config.hparams[agents_constants.COMMON.RUNNING_AVERAGE].value)) # Log stopping times if env_constants.ENV_METRICS.INTRUSION_START in exp_result.all_metrics: exp_result.all_metrics[seed][env_constants.ENV_METRICS.INTRUSION_START].append( round(avg_metrics[env_constants.ENV_METRICS.INTRUSION_START], 3)) if agents_constants.COMMON.RUNNING_AVERAGE_INTRUSION_START in exp_result.all_metrics: exp_result.all_metrics[seed][agents_constants.COMMON.RUNNING_AVERAGE_INTRUSION_START].append( ExperimentUtil.running_average( exp_result.all_metrics[seed][env_constants.ENV_METRICS.INTRUSION_START], self.experiment_config.hparams[agents_constants.COMMON.RUNNING_AVERAGE].value)) exp_result.all_metrics[seed][env_constants.ENV_METRICS.TIME_HORIZON].append( round(avg_metrics[env_constants.ENV_METRICS.TIME_HORIZON], 3)) exp_result.all_metrics[seed][agents_constants.COMMON.RUNNING_AVERAGE_TIME_HORIZON].append( ExperimentUtil.running_average( exp_result.all_metrics[seed][env_constants.ENV_METRICS.TIME_HORIZON], self.experiment_config.hparams[agents_constants.COMMON.RUNNING_AVERAGE].value)) for l in range(1, self.experiment_config.hparams[agents_constants.BAYESIAN_OPTIMIZATION.L].value + 1): if env_constants.ENV_METRICS.STOP + f"_{l}" in avg_metrics: exp_result.plot_metrics.append(env_constants.ENV_METRICS.STOP + f"_{l}") exp_result.all_metrics[seed][env_constants.ENV_METRICS.STOP + f"_{l}"].append( round(avg_metrics[env_constants.ENV_METRICS.STOP + f"_{l}"], 3)) exp_result.all_metrics[seed][env_constants.ENV_METRICS.STOP + f"_running_average_{l}"].append( ExperimentUtil.running_average( exp_result.all_metrics[seed][env_constants.ENV_METRICS.STOP + f"_{l}"], self.experiment_config.hparams[agents_constants.COMMON.RUNNING_AVERAGE].value)) # Log baseline returns exp_result.all_metrics[seed][env_constants.ENV_METRICS.AVERAGE_UPPER_BOUND_RETURN].append( round(avg_metrics[env_constants.ENV_METRICS.AVERAGE_UPPER_BOUND_RETURN], 3)) if env_constants.ENV_METRICS.AVERAGE_DEFENDER_BASELINE_STOP_ON_FIRST_ALERT_RETURN in avg_metrics: exp_result.all_metrics[seed][ env_constants.ENV_METRICS.AVERAGE_DEFENDER_BASELINE_STOP_ON_FIRST_ALERT_RETURN].append( round(avg_metrics[env_constants.ENV_METRICS.AVERAGE_DEFENDER_BASELINE_STOP_ON_FIRST_ALERT_RETURN], 3)) if i % self.experiment_config.log_every == 0 and i > 0: # Update training job total_iterations = len(random_seeds) * N iterations_done = (random_seeds.index(seed)) * N + i progress = round(iterations_done / total_iterations, 2) training_job.progress_percentage = progress training_job.experiment_result = exp_result if self.env is not None and len(self.env.get_traces()) > 0: training_job.simulation_traces.append(self.env.get_traces()[-1]) if len(training_job.simulation_traces) > training_job.num_cached_traces: training_job.simulation_traces = training_job.simulation_traces[1:] if self.save_to_metastore: MetastoreFacade.update_training_job(training_job=training_job, id=training_job.id) # Update execution ts = time.time() self.exp_execution.timestamp = ts self.exp_execution.result = exp_result if self.save_to_metastore: MetastoreFacade.update_experiment_execution(experiment_execution=self.exp_execution, id=self.exp_execution.id) Logger.__call__().get_logger().info( f"[BAYES-OPT] i: {i}, J:{J}, " f"J_avg_{self.experiment_config.hparams[agents_constants.COMMON.RUNNING_AVERAGE].value}:" f"{running_avg_J}, " f"opt_J:{exp_result.all_metrics[seed][env_constants.ENV_METRICS.AVERAGE_UPPER_BOUND_RETURN][-1]}, " f"theta:{policy.theta}, progress: {round(progress * 100, 2)}%, " f"runtime: {time_elapsed_minutes} min") policy = self.get_policy(theta=list(theta), L=L) exp_result.policies[seed] = policy # Save policy if self.save_to_metastore: MetastoreFacade.save_multi_threshold_stopping_policy(multi_threshold_stopping_policy=policy) return exp_result
[docs] def eval_theta(self, policy: Union[MultiThresholdStoppingPolicy, LinearThresholdStoppingPolicy], max_steps: int = 200) -> Dict[str, Any]: """ Evaluates a given threshold policy by running monte-carlo simulations :param policy: the policy to evaluate :return: the average metrics of the evaluation """ if self.env is None: raise ValueError("An environment need to specified to run the evaluation") eval_batch_size = self.experiment_config.hparams[agents_constants.COMMON.EVAL_BATCH_SIZE].value metrics: Dict[str, Any] = {} for j in range(eval_batch_size): done = False o, _ = self.env.reset() l = int(o[0]) b1 = o[1] t = 1 r = 0 a = 0 info: Dict[str, Any] = {} while not done and t <= max_steps: Logger.__call__().get_logger().debug(f"t:{t}, a: {a}, b1:{b1}, r:{r}, l:{l}, info:{info}") if self.experiment_config.player_type == PlayerType.ATTACKER: policy.opponent_strategy = self.env.static_defender_strategy a = policy.action(o=o) else: a = policy.action(o=o) o, r, done, _, info = self.env.step(a) l = int(o[0]) b1 = o[1] t += 1 metrics = BayesOptAgent.update_metrics(metrics=metrics, info=info) avg_metrics = BayesOptAgent.compute_avg_metrics(metrics=metrics) return avg_metrics
[docs] @staticmethod def update_metrics(metrics: Dict[str, List[Union[float, int]]], info: Dict[str, Union[float, int]]) \ -> Dict[str, List[Union[float, int]]]: """ Update a dict with aggregated metrics using new information from the environment :param metrics: the dict with the aggregated metrics :param info: the new information :return: the updated dict """ for k, v in info.items(): if k in metrics: metrics[k].append(round(v, 3)) else: metrics[k] = [v] return metrics
[docs] @staticmethod def compute_avg_metrics(metrics: Dict[str, List[Union[float, int]]]) -> Dict[str, Union[float, int]]: """ Computes the average metrics of a dict with aggregated metrics :param metrics: the dict with the aggregated metrics :return: the average metrics """ avg_metrics = {} for k, v in metrics.items(): avg = round(sum(v) / len(v), 2) avg_metrics[k] = avg return avg_metrics
[docs] @staticmethod def initial_theta(L: int) -> npt.NDArray[Any]: """ Initializes theta randomly :param L: the dimension of theta :return: the initialized theta vector """ theta_1 = [] for k in range(L): theta_1.append(np.random.uniform(-3, 3)) return np.array(theta_1)
[docs] @staticmethod def round_vec(vec) -> List[float]: """ Rounds a vector to 3 decimals :param vec: the vector to round :return: the rounded vector """ return list(map(lambda x: round(x, 3), vec))
[docs] @staticmethod def get_theta_vector_from_param_dict(param_dict: Dict[str, float]) -> List[float]: """ Extracts the theta vector from the parameter dict :param param_dict: the parameter dict :return: the theta vector """ return list(param_dict.values())
[docs] def get_policy(self, theta: List[float], L: int) \ -> Union[MultiThresholdStoppingPolicy, LinearThresholdStoppingPolicy]: """ Utility method for getting the policy of a given parameter vector :param theta: the parameter vector :param L: the number of parameters :return: the policy """ if self.experiment_config.hparams[agents_constants.BAYESIAN_OPTIMIZATION.POLICY_TYPE].value \ == PolicyType.MULTI_THRESHOLD.value: policy = MultiThresholdStoppingPolicy( theta=list(theta), simulation_name=self.simulation_env_config.name, states=self.simulation_env_config.state_space_config.states, player_type=self.experiment_config.player_type, L=L, actions=self.simulation_env_config.joint_action_space_config.action_spaces[ self.experiment_config.player_idx].actions, experiment_config=self.experiment_config, avg_R=-1, agent_type=AgentType.BAYESIAN_OPTIMIZATION) else: policy = LinearThresholdStoppingPolicy( theta=list(theta), simulation_name=self.simulation_env_config.name, states=self.simulation_env_config.state_space_config.states, player_type=self.experiment_config.player_type, L=L, actions=self.simulation_env_config.joint_action_space_config.action_spaces[ self.experiment_config.player_idx].actions, experiment_config=self.experiment_config, avg_R=-1, agent_type=AgentType.BAYESIAN_OPTIMIZATION) return policy