Source code for csle_agents.agents.fp.fictitious_play_agent

from typing import Union, List, Dict, Optional, Tuple, Any
import math
import time
import gymnasium as gym
import os
import numpy as np
import numpy.typing as npt
import gym_csle_stopping_game.constants.constants as env_constants
from csle_common.dao.emulation_config.emulation_env_config import EmulationEnvConfig
from csle_common.dao.simulation_config.simulation_env_config import SimulationEnvConfig
from csle_common.dao.training.experiment_config import ExperimentConfig
from csle_common.dao.training.experiment_execution import ExperimentExecution
from csle_common.dao.training.experiment_result import ExperimentResult
from csle_common.dao.training.agent_type import AgentType
from csle_common.util.experiment_util import ExperimentUtil
from csle_common.logging.log import Logger
from csle_common.dao.training.vector_policy import VectorPolicy
from csle_common.metastore.metastore_facade import MetastoreFacade
from csle_common.dao.jobs.training_job_config import TrainingJobConfig
from csle_common.util.general_util import GeneralUtil
from csle_common.dao.simulation_config.base_env import BaseEnv
from csle_agents.agents.base.base_agent import BaseAgent
import csle_agents.constants.constants as agents_constants


[docs]class FictitiousPlayAgent(BaseAgent): """ Fictitious Play Agent for Normal-form Games (Brown 1951) """ def __init__(self, simulation_env_config: SimulationEnvConfig, experiment_config: ExperimentConfig, env: Optional[BaseEnv] = None, emulation_env_config: Union[None, EmulationEnvConfig] = None, training_job: Optional[TrainingJobConfig] = None, save_to_metastore: bool = True): """ Initializes the Fictitious play agent :param simulation_env_config: the simulation env config :param emulation_env_config: the emulation env config :param experiment_config: the experiment config :param env: (optional) the gym environment to use for simulation :param training_job: (optional) a training job configuration :param save_to_metastore: boolean flag that can be set to avoid saving results and progress to the metastore """ super().__init__(simulation_env_config=simulation_env_config, emulation_env_config=emulation_env_config, experiment_config=experiment_config) assert experiment_config.agent_type == AgentType.FICTITIOUS_PLAY self.env = env self.training_job = training_job self.save_to_metastore = save_to_metastore
[docs] def train(self) -> ExperimentExecution: """ Performs the policy training for the given random seeds using fictitious play :return: the training metrics and the trained policies """ pid = os.getpid() # Initialize metrics exp_result = ExperimentResult() exp_result.plot_metrics.append(agents_constants.COMMON.AVERAGE_RETURN) exp_result.plot_metrics.append(agents_constants.COMMON.RUNNING_AVERAGE_RETURN) exp_result.plot_metrics.append(env_constants.ENV_METRICS.INTRUSION_LENGTH) exp_result.plot_metrics.append(agents_constants.COMMON.RUNNING_AVERAGE_INTRUSION_LENGTH) exp_result.plot_metrics.append(env_constants.ENV_METRICS.INTRUSION_START) exp_result.plot_metrics.append(agents_constants.COMMON.RUNNING_AVERAGE_INTRUSION_START) exp_result.plot_metrics.append(env_constants.ENV_METRICS.TIME_HORIZON) exp_result.plot_metrics.append(agents_constants.COMMON.RUNNING_AVERAGE_TIME_HORIZON) exp_result.plot_metrics.append(env_constants.ENV_METRICS.AVERAGE_UPPER_BOUND_RETURN) exp_result.plot_metrics.append(env_constants.ENV_METRICS.AVERAGE_DEFENDER_BASELINE_STOP_ON_FIRST_ALERT_RETURN) descr = f"Training of policies with the fictitious play algorithm using " \ f"simulation:{self.simulation_env_config.name}" for seed in self.experiment_config.random_seeds: exp_result.all_metrics[seed] = {} exp_result.all_metrics[seed][agents_constants.COMMON.AVERAGE_RETURN] = [] exp_result.all_metrics[seed][agents_constants.COMMON.RUNNING_AVERAGE_RETURN] = [] exp_result.all_metrics[seed][agents_constants.COMMON.RUNNING_AVERAGE_INTRUSION_START] = [] exp_result.all_metrics[seed][agents_constants.COMMON.RUNNING_AVERAGE_TIME_HORIZON] = [] exp_result.all_metrics[seed][agents_constants.COMMON.RUNNING_AVERAGE_INTRUSION_LENGTH] = [] exp_result.all_metrics[seed][env_constants.ENV_METRICS.INTRUSION_START] = [] exp_result.all_metrics[seed][env_constants.ENV_METRICS.INTRUSION_LENGTH] = [] exp_result.all_metrics[seed][env_constants.ENV_METRICS.TIME_HORIZON] = [] exp_result.all_metrics[seed][env_constants.ENV_METRICS.AVERAGE_UPPER_BOUND_RETURN] = [] exp_result.all_metrics[seed][ env_constants.ENV_METRICS.AVERAGE_DEFENDER_BASELINE_STOP_ON_FIRST_ALERT_RETURN] = [] # Initialize training job if self.training_job is None: self.training_job = TrainingJobConfig( simulation_env_name=self.simulation_env_config.name, experiment_config=self.experiment_config, progress_percentage=0, pid=pid, experiment_result=exp_result, emulation_env_name=None, simulation_traces=[], num_cached_traces=agents_constants.COMMON.NUM_CACHED_SIMULATION_TRACES, log_file_path=Logger.__call__().get_log_file_path(), descr=descr, physical_host_ip=GeneralUtil.get_host_ip()) if self.save_to_metastore: training_job_id = MetastoreFacade.save_training_job(training_job=self.training_job) self.training_job.id = training_job_id else: self.training_job.pid = pid self.training_job.progress_percentage = 0 self.training_job.experiment_result = exp_result if self.save_to_metastore: MetastoreFacade.update_training_job(training_job=self.training_job, id=self.training_job.id) # Initialize execution result ts = time.time() emulation_name = None if self.emulation_env_config is not None: emulation_name = self.emulation_env_config.name simulation_name = self.simulation_env_config.name self.exp_execution = ExperimentExecution( result=exp_result, config=self.experiment_config, timestamp=ts, emulation_name=emulation_name, simulation_name=simulation_name, descr=descr, log_file_path=self.training_job.log_file_path) if self.save_to_metastore: exp_execution_id = MetastoreFacade.save_experiment_execution(self.exp_execution) self.exp_execution.id = exp_execution_id config = self.simulation_env_config.simulation_env_input_config if self.env is None: self.env = gym.make(self.simulation_env_config.gym_env_name, config=config) for seed in self.experiment_config.random_seeds: ExperimentUtil.set_seed(seed) exp_result = self.fictitious_play(exp_result=exp_result, seed=seed, training_job=self.training_job, random_seeds=self.experiment_config.random_seeds) # Save latest trace if self.save_to_metastore: if self.env is not None and len(self.env.get_traces()) > 0: MetastoreFacade.save_simulation_trace(self.env.get_traces()[-1]) self.env.reset_traces() # Calculate average and std metrics exp_result.avg_metrics = {} exp_result.std_metrics = {} for metric in exp_result.all_metrics[self.experiment_config.random_seeds[0]].keys(): value_vectors = [] for seed in self.experiment_config.random_seeds: value_vectors.append(exp_result.all_metrics[seed][metric]) avg_metrics = [] std_metrics = [] for i in range(len(value_vectors[0])): if type(value_vectors[0][0]) is int or type(value_vectors[0][0]) is float \ or type(value_vectors[0][0]) is np.int64 or type(value_vectors[0][0]) is np.float64: seed_values = [] for seed_idx in range(len(self.experiment_config.random_seeds)): seed_values.append(value_vectors[seed_idx][i]) avg = ExperimentUtil.mean_confidence_interval( data=seed_values, confidence=self.experiment_config.hparams[agents_constants.COMMON.CONFIDENCE_INTERVAL].value)[0] if not math.isnan(avg): avg_metrics.append(avg) ci = ExperimentUtil.mean_confidence_interval( data=seed_values, confidence=self.experiment_config.hparams[agents_constants.COMMON.CONFIDENCE_INTERVAL].value)[1] if not math.isnan(ci): std_metrics.append(ci) else: std_metrics.append(-1) else: avg_metrics.append(-1) std_metrics.append(-1) exp_result.avg_metrics[metric] = avg_metrics exp_result.std_metrics[metric] = std_metrics traces = self.env.get_traces() if len(traces) > 0 and self.save_to_metastore: MetastoreFacade.save_simulation_trace(traces[-1]) ts = time.time() self.exp_execution.timestamp = ts self.exp_execution.result = exp_result if self.save_to_metastore: MetastoreFacade.update_experiment_execution(experiment_execution=self.exp_execution, id=self.exp_execution.id) return self.exp_execution
[docs] def hparam_names(self) -> List[str]: """ :return: a list with the hyperparameter names """ return [agents_constants.FICTITIOUS_PLAY.N, agents_constants.FICTITIOUS_PLAY.PAYOFF_MATRIX, agents_constants.COMMON.EVAL_BATCH_SIZE, agents_constants.COMMON.CONFIDENCE_INTERVAL, agents_constants.COMMON.RUNNING_AVERAGE]
[docs] def fictitious_play(self, exp_result: ExperimentResult, seed: int, training_job: TrainingJobConfig, random_seeds: List[int]) -> ExperimentResult: """ Runs the fictitious play algorithm :param exp_result: the experiment result object to store the result :param seed: the seed :param training_job: the training job config :param random_seeds: list of seeds :return: the updated experiment result and the trained policy """ # Hyperparameters N = self.experiment_config.hparams[agents_constants.FICTITIOUS_PLAY.N].value payoff_matrix = np.array(self.experiment_config.hparams[agents_constants.FICTITIOUS_PLAY.PAYOFF_MATRIX].value) p1_prior = self.experiment_config.hparams[agents_constants.FICTITIOUS_PLAY.PLAYER_1_PRIOR].value p2_prior = self.experiment_config.hparams[agents_constants.FICTITIOUS_PLAY.PLAYER_2_PRIOR].value p1_empirical_strategies = [] p2_empirical_strategies = [] p1_best_responses = [] p2_best_responses = [] p1_payoffs = [] p2_payoffs = [] p1_counts_list = [] p2_counts_list = [] p1_counts_list.append(p1_prior) p2_counts_list.append(p2_prior) p1_empirical_strategy = p1_prior p2_empirical_strategy = p2_prior J = 0.0 for i in range(N): p1_empirical_strategy = self.compute_empirical_strategy(p1_counts_list[-1]) p2_empirical_strategy = self.compute_empirical_strategy(p2_counts_list[-1]) p1_best_response, p1_payoff = self.best_response(p2_empirical_strategy, A=payoff_matrix, maximize=True) p2_best_response, p2_payoff = self.best_response(p1_empirical_strategy, A=payoff_matrix, maximize=False) p1_empirical_strategies.append(p1_empirical_strategy) p2_empirical_strategies.append(p2_empirical_strategy) p1_best_responses.append(p1_best_response) p2_best_responses.append(p2_best_response) p1_payoffs.append(p1_payoff) p2_payoffs.append(p2_payoff) latest_counts_p1 = p1_counts_list[-1].copy() latest_counts_p2 = p2_counts_list[-1].copy() latest_counts_p1[p1_best_response] += 1 latest_counts_p2[p2_best_response] += 1 p1_counts_list.append(latest_counts_p1) p2_counts_list.append(latest_counts_p2) # Log average return J = p1_payoff # policy.avg_R = J exp_result.all_metrics[seed][agents_constants.COMMON.AVERAGE_RETURN].append(J) running_avg_J = ExperimentUtil.running_average( exp_result.all_metrics[seed][agents_constants.COMMON.AVERAGE_RETURN], self.experiment_config.hparams[agents_constants.COMMON.RUNNING_AVERAGE].value) exp_result.all_metrics[seed][agents_constants.COMMON.RUNNING_AVERAGE_RETURN].append(running_avg_J) if i % self.experiment_config.log_every == 0 and i > 0: # Update training job total_iterations = len(random_seeds) * N iterations_done = (random_seeds.index(seed)) * N + i progress = round(iterations_done / total_iterations, 2) training_job.progress_percentage = progress training_job.experiment_result = exp_result if self.env is not None and len(self.env.get_traces()) > 0: training_job.simulation_traces.append(self.env.get_traces()[-1]) if len(training_job.simulation_traces) > training_job.num_cached_traces: training_job.simulation_traces = training_job.simulation_traces[1:] if self.save_to_metastore: MetastoreFacade.update_training_job(training_job=training_job, id=training_job.id) # Update execution ts = time.time() self.exp_execution.timestamp = ts self.exp_execution.result = exp_result if self.save_to_metastore: MetastoreFacade.update_experiment_execution(experiment_execution=self.exp_execution, id=self.exp_execution.id) Logger.__call__().get_logger().info( f"[FICTITIOUS-PLAY] i: {i}, J:{J}, " f"J_avg_{self.experiment_config.hparams[agents_constants.COMMON.RUNNING_AVERAGE].value}:" f"{running_avg_J}") p1_policy = VectorPolicy(policy_vector=p1_empirical_strategy, simulation_name=self.simulation_env_config.name, player_type=self.experiment_config.player_type, actions=list(range(len(p1_empirical_strategy))), avg_R=J, agent_type=AgentType.FICTITIOUS_PLAY) p2_policy = VectorPolicy(policy_vector=p2_empirical_strategy, simulation_name=self.simulation_env_config.name, player_type=self.experiment_config.player_type, actions=list(range(len(p2_empirical_strategy))), avg_R=J, agent_type=AgentType.FICTITIOUS_PLAY) exp_result.policies[seed] = p1_policy exp_result.policies[seed + 1] = p2_policy # Save policy if self.save_to_metastore: MetastoreFacade.save_vector_policy(vector_policy=p1_policy) MetastoreFacade.save_vector_policy(vector_policy=p2_policy) return exp_result
[docs] def compute_empirical_strategy(self, counts) -> List[float]: """ Computes the empirical strategy from a list of counts :param counts: the list of counts :return: the empirical strategy """ s = [] counts_sum = sum(counts) for i in range(len(counts)): s.append(counts[i] / counts_sum) return s
[docs] def best_response(self, p: List[float], A: npt.NDArray[Any], maximize: bool = True) \ -> Tuple[int, float]: """ Computes a best response against p :param p: the opponents strategy vector :param A: the payoff matrix :param maximize: whether it is a maximizer player or minimizer player :return: the best response action and its payoff (value) """ if maximize: payoffs = A.dot(np.array(p)) br = np.argmax(payoffs) return int(br), payoffs[int(br)] else: payoffs = np.array(p).transpose().dot(A) br = np.argmin(payoffs) return int(br), payoffs[int(br)]
[docs] @staticmethod def update_metrics(metrics: Dict[str, List[Union[float, int]]], info: Dict[str, Union[float, int]]) \ -> Dict[str, List[Union[float, int]]]: """ Update a dict with aggregated metrics using new information from the environment :param metrics: the dict with the aggregated metrics :param info: the new information :return: the updated dict """ for k, v in info.items(): if k in metrics: metrics[k].append(round(v, 3)) else: metrics[k] = [v] return metrics
[docs] @staticmethod def compute_avg_metrics(metrics: Dict[str, List[Union[float, int]]]) -> Dict[str, Union[float, int]]: """ Computes the average metrics of a dict with aggregated metrics :param metrics: the dict with the aggregated metrics :return: the average metrics """ avg_metrics = {} for k, v in metrics.items(): avg = round(sum(v) / len(v), 2) avg_metrics[k] = avg return avg_metrics
[docs] @staticmethod def round_vec(vec) -> List[float]: """ Rounds a vector to 3 decimals :param vec: the vector to round :return: the rounded vector """ return list(map(lambda x: round(x, 3), vec))