from typing import Union, List, Optional, Any, Dict, Tuple
import math
import time
import random
import gymnasium as gym
import os
import numpy as np
import numpy.typing as npt
import gym_csle_stopping_game.constants.constants as env_constants
from csle_common.dao.emulation_config.emulation_env_config import EmulationEnvConfig
from csle_common.dao.simulation_config.simulation_env_config import SimulationEnvConfig
from csle_common.dao.training.experiment_config import ExperimentConfig
from csle_common.dao.training.experiment_execution import ExperimentExecution
from csle_common.dao.training.experiment_result import ExperimentResult
from csle_common.dao.training.agent_type import AgentType
from csle_common.dao.training.player_type import PlayerType
from csle_common.util.experiment_util import ExperimentUtil
from csle_common.logging.log import Logger
from csle_common.dao.training.multi_threshold_stopping_policy import MultiThresholdStoppingPolicy
from csle_common.dao.training.linear_threshold_stopping_policy import LinearThresholdStoppingPolicy
from csle_common.metastore.metastore_facade import MetastoreFacade
from csle_common.dao.jobs.training_job_config import TrainingJobConfig
from csle_common.util.general_util import GeneralUtil
from csle_common.dao.simulation_config.base_env import BaseEnv
from csle_common.dao.training.policy_type import PolicyType
from csle_agents.agents.base.base_agent import BaseAgent
from csle_agents.common.objective_type import ObjectiveType
import csle_agents.constants.constants as agents_constants
[docs]class ParticleSwarmAgent(BaseAgent):
"""
Particle Swarm Search Agent
"""
def __init__(self, simulation_env_config: SimulationEnvConfig,
emulation_env_config: Union[None, EmulationEnvConfig],
experiment_config: ExperimentConfig,
env: Optional[BaseEnv] = None, training_job: Optional[TrainingJobConfig] = None,
save_to_metastore: bool = True):
"""
Initializes the Particle Swarm Agent
:param simulation_env_config: the simulation env config
:param emulation_env_config: the emulation env config
:param experiment_config: the experiment config
:param env: (optional) the gym environment to use for simulation
:param training_job: (optional) a training job configuration
:param save_to_metastore: boolean flag that can be set to avoid saving results and progress to the metastore
"""
super().__init__(simulation_env_config=simulation_env_config, emulation_env_config=emulation_env_config,
experiment_config=experiment_config)
assert experiment_config.agent_type == AgentType.PARTICLE_SWARM
self.env = env
self.training_job = training_job
self.save_to_metastore = save_to_metastore
[docs] def train(self) -> ExperimentExecution:
"""
Performs the policy training for the given random seeds using particle swarm
:return: the training metrics and the trained policies
"""
pid = os.getpid()
# Initialize metrics
exp_result = ExperimentResult()
exp_result.plot_metrics.append(agents_constants.COMMON.AVERAGE_RETURN)
exp_result.plot_metrics.append(agents_constants.COMMON.RUNNING_AVERAGE_RETURN)
exp_result.plot_metrics.append(env_constants.ENV_METRICS.INTRUSION_LENGTH)
exp_result.plot_metrics.append(agents_constants.COMMON.RUNNING_AVERAGE_INTRUSION_LENGTH)
exp_result.plot_metrics.append(env_constants.ENV_METRICS.INTRUSION_START)
exp_result.plot_metrics.append(agents_constants.COMMON.RUNNING_AVERAGE_INTRUSION_START)
exp_result.plot_metrics.append(env_constants.ENV_METRICS.TIME_HORIZON)
exp_result.plot_metrics.append(agents_constants.COMMON.RUNNING_AVERAGE_TIME_HORIZON)
exp_result.plot_metrics.append(env_constants.ENV_METRICS.AVERAGE_UPPER_BOUND_RETURN)
exp_result.plot_metrics.append(env_constants.ENV_METRICS.AVERAGE_DEFENDER_BASELINE_STOP_ON_FIRST_ALERT_RETURN)
for l in range(1, self.experiment_config.hparams[agents_constants.PARTICLE_SWARM.L].value + 1):
exp_result.plot_metrics.append(env_constants.ENV_METRICS.STOP + f"_{l}")
exp_result.plot_metrics.append(env_constants.ENV_METRICS.STOP + f"_running_average_{l}")
descr = f"Training of policies with the random search algorithm using " \
f"simulation:{self.simulation_env_config.name}"
for seed in self.experiment_config.random_seeds:
exp_result.all_metrics[seed] = {}
exp_result.all_metrics[seed][agents_constants.PARTICLE_SWARM.THETAS] = []
exp_result.all_metrics[seed][agents_constants.COMMON.AVERAGE_RETURN] = []
exp_result.all_metrics[seed][agents_constants.COMMON.RUNNING_AVERAGE_RETURN] = []
exp_result.all_metrics[seed][agents_constants.PARTICLE_SWARM.THRESHOLDS] = []
if self.experiment_config.player_type == PlayerType.DEFENDER:
for l in range(1, self.experiment_config.hparams[agents_constants.PARTICLE_SWARM.L].value + 1):
exp_result.all_metrics[seed][
agents_constants.PARTICLE_SWARM.STOP_DISTRIBUTION_DEFENDER + f"_l={l}"] = []
else:
for s in self.simulation_env_config.state_space_config.states:
for l in range(1, self.experiment_config.hparams[agents_constants.PARTICLE_SWARM.L].value + 1):
exp_result.all_metrics[seed][agents_constants.PARTICLE_SWARM.STOP_DISTRIBUTION_ATTACKER
+ f"_l={l}_s={s.id}"] = []
exp_result.all_metrics[seed][agents_constants.COMMON.RUNNING_AVERAGE_INTRUSION_START] = []
exp_result.all_metrics[seed][agents_constants.COMMON.RUNNING_AVERAGE_TIME_HORIZON] = []
exp_result.all_metrics[seed][agents_constants.COMMON.RUNNING_AVERAGE_INTRUSION_LENGTH] = []
exp_result.all_metrics[seed][env_constants.ENV_METRICS.INTRUSION_START] = []
exp_result.all_metrics[seed][env_constants.ENV_METRICS.INTRUSION_LENGTH] = []
exp_result.all_metrics[seed][env_constants.ENV_METRICS.TIME_HORIZON] = []
exp_result.all_metrics[seed][env_constants.ENV_METRICS.AVERAGE_UPPER_BOUND_RETURN] = []
exp_result.all_metrics[seed][
env_constants.ENV_METRICS.AVERAGE_DEFENDER_BASELINE_STOP_ON_FIRST_ALERT_RETURN] = []
for l in range(1, self.experiment_config.hparams[agents_constants.PARTICLE_SWARM.L].value + 1):
exp_result.all_metrics[seed][env_constants.ENV_METRICS.STOP + f"_{l}"] = []
exp_result.all_metrics[seed][env_constants.ENV_METRICS.STOP + f"_running_average_{l}"] = []
# Initialize training job
if self.training_job is None:
emulation_name = ""
if self.emulation_env_config is not None:
emulation_name = self.emulation_env_config.name
self.training_job = TrainingJobConfig(
simulation_env_name=self.simulation_env_config.name, experiment_config=self.experiment_config,
progress_percentage=0, pid=pid, experiment_result=exp_result,
emulation_env_name=emulation_name, simulation_traces=[],
num_cached_traces=agents_constants.COMMON.NUM_CACHED_SIMULATION_TRACES,
log_file_path=Logger.__call__().get_log_file_path(), descr=descr,
physical_host_ip=GeneralUtil.get_host_ip())
if self.save_to_metastore:
training_job_id = MetastoreFacade.save_training_job(training_job=self.training_job)
self.training_job.id = training_job_id
else:
self.training_job.pid = pid
self.training_job.progress_percentage = 0
self.training_job.experiment_result = exp_result
if self.save_to_metastore:
MetastoreFacade.update_training_job(training_job=self.training_job, id=self.training_job.id)
# Initialize execution result
ts = time.time()
emulation_name = ""
if self.emulation_env_config is not None:
emulation_name = self.emulation_env_config.name
simulation_name = self.simulation_env_config.name
self.exp_execution = ExperimentExecution(
result=exp_result, config=self.experiment_config, timestamp=ts, emulation_name=emulation_name,
simulation_name=simulation_name, descr=descr, log_file_path=self.training_job.log_file_path)
if self.save_to_metastore:
exp_execution_id = MetastoreFacade.save_experiment_execution(self.exp_execution)
self.exp_execution.id = exp_execution_id
config = self.simulation_env_config.simulation_env_input_config
if self.env is None:
self.env = gym.make(self.simulation_env_config.gym_env_name, config=config)
for seed in self.experiment_config.random_seeds:
ExperimentUtil.set_seed(seed)
exp_result = self.particle_swarm(exp_result=exp_result, seed=seed,
random_seeds=self.experiment_config.random_seeds,
training_job=self.training_job)
# Save latest trace
if self.save_to_metastore:
MetastoreFacade.save_simulation_trace(self.env.get_traces()[-1])
self.env.reset_traces()
# Calculate average and std metrics
exp_result.avg_metrics = {}
exp_result.std_metrics = {}
for metric in exp_result.all_metrics[self.experiment_config.random_seeds[0]].keys():
value_vectors = []
for seed in self.experiment_config.random_seeds:
value_vectors.append(exp_result.all_metrics[seed][metric])
max_num_measurements = max(list(map(lambda x: len(x), value_vectors)))
value_vectors = list(filter(lambda x: len(x) == max_num_measurements, value_vectors))
avg_metrics = []
std_metrics = []
for i in range(len(value_vectors[0])):
if type(value_vectors[0][0]) is int or type(value_vectors[0][0]) is float \
or type(value_vectors[0][0]) is np.int64 or type(value_vectors[0][0]) is np.float64:
seed_values = []
for seed_idx in range(len(value_vectors)):
seed_values.append(value_vectors[seed_idx][i])
avg = ExperimentUtil.mean_confidence_interval(
data=seed_values,
confidence=self.experiment_config.hparams[agents_constants.COMMON.CONFIDENCE_INTERVAL].value)[0]
if not math.isnan(avg):
avg_metrics.append(avg)
ci = ExperimentUtil.mean_confidence_interval(
data=seed_values,
confidence=self.experiment_config.hparams[agents_constants.COMMON.CONFIDENCE_INTERVAL].value)[1]
if not math.isnan(ci):
std_metrics.append(ci)
else:
std_metrics.append(-1)
else:
avg_metrics.append(-1)
std_metrics.append(-1)
exp_result.avg_metrics[metric] = avg_metrics
exp_result.std_metrics[metric] = std_metrics
traces = self.env.get_traces()
if len(traces) > 0 and self.save_to_metastore:
MetastoreFacade.save_simulation_trace(traces[-1])
ts = time.time()
self.exp_execution.timestamp = ts
self.exp_execution.result = exp_result
if self.save_to_metastore:
MetastoreFacade.update_experiment_execution(experiment_execution=self.exp_execution,
id=self.exp_execution.id)
return self.exp_execution
[docs] def hparam_names(self) -> List[str]:
"""
:return: a list with the hyperparameter names
"""
return [agents_constants.PARTICLE_SWARM.N, agents_constants.PARTICLE_SWARM.DELTA,
agents_constants.PARTICLE_SWARM.L, agents_constants.PARTICLE_SWARM.THETA1,
agents_constants.COMMON.EVAL_BATCH_SIZE,
agents_constants.COMMON.CONFIDENCE_INTERVAL,
agents_constants.COMMON.RUNNING_AVERAGE]
[docs] def particle_swarm(self, exp_result: ExperimentResult, seed: int, random_seeds: List[int],
training_job: TrainingJobConfig):
"""
Runs the particle swarm algorithm
:param exp_result: the experiment result object to store the result
:param seed: the seed
:param training_job: the training job config
:param random_seeds: list of seeds
:return: the updated experiment result and the trained policy
"""
S = self.experiment_config.hparams[agents_constants.PARTICLE_SWARM.S].value
b_lo = self.experiment_config.hparams[agents_constants.PARTICLE_SWARM.B_LOW].value
b_up = self.experiment_config.hparams[agents_constants.PARTICLE_SWARM.B_UP].value
Phi_p = self.experiment_config.hparams[agents_constants.PARTICLE_SWARM.COGNITIVE_COEFFICIENT].value
Phi_g = self.experiment_config.hparams[agents_constants.PARTICLE_SWARM.SOCIAL_COEFFICIENT].value
w = self.experiment_config.hparams[agents_constants.PARTICLE_SWARM.INERTIA_WEIGHT].value
L = self.experiment_config.hparams[agents_constants.PARTICLE_SWARM.L].value
objective_type_param = self.experiment_config.hparams[agents_constants.PARTICLE_SWARM.OBJECTIVE_TYPE].value
if agents_constants.PARTICLE_SWARM.THETA1 in self.experiment_config.hparams:
thetas = self.experiment_config.hparams[agents_constants.PARTICLE_SWARM.THETA1].value
print("thetas = ", thetas)
else:
if self.experiment_config.player_type == PlayerType.DEFENDER:
P, thetas = ParticleSwarmAgent.initial_theta(L=L, S=S, b_lo=b_lo, b_up=b_up)
else:
P, thetas = ParticleSwarmAgent.initial_theta(L=2 * L, S=S, b_lo=b_lo, b_up=b_up)
theta = list(thetas[:, random.randint(0, S - 1)])
policy = self.get_policy(theta=theta, L=L)
avg_metrics = self.eval_theta(
policy=policy, max_steps=self.experiment_config.hparams[agents_constants.COMMON.MAX_ENV_STEPS].value)
J = round(avg_metrics[env_constants.ENV_METRICS.RETURN], 3)
policy.avg_R = J
exp_result.all_metrics[seed][agents_constants.COMMON.AVERAGE_RETURN].append(J)
exp_result.all_metrics[seed][agents_constants.COMMON.RUNNING_AVERAGE_RETURN].append(J)
exp_result.all_metrics[seed][agents_constants.PARTICLE_SWARM.THETAS].append(
ParticleSwarmAgent.round_vec(theta))
g = [random.uniform(b_lo, b_up) for i in range(L)]
# Hyperparameters
N = self.experiment_config.hparams[agents_constants.PARTICLE_SWARM.N].value
for i in range(S):
policy = self.get_policy(theta=list(P[:, i]), L=L)
avg_metrics = self.eval_theta(
policy=policy, max_steps=self.experiment_config.hparams[agents_constants.COMMON.MAX_ENV_STEPS].value)
J_p = round(avg_metrics[env_constants.ENV_METRICS.RETURN], 3)
if objective_type_param == ObjectiveType.MAX:
J_p = -J_p
policy = self.get_policy(theta=list(g), L=L)
avg_metrics = self.eval_theta(
policy=policy, max_steps=self.experiment_config.hparams[agents_constants.COMMON.MAX_ENV_STEPS].value)
J_g = round(avg_metrics[env_constants.ENV_METRICS.RETURN], 3)
if objective_type_param == ObjectiveType.MAX:
J_g = -J_g
policy.avg_R = J_g
if J_p < J_g:
g = list(P[:, i])
V = ParticleSwarmAgent.initial_velocity(L, S, b_lo, b_up)
iter_variable = 0
while iter_variable <= N:
for j in range(S):
for l in range(L):
r_p = random.random()
r_g = random.random()
V[l, j] = w * V[l, j] + Phi_p * r_p * (P[l, j] - thetas[l, j]) + Phi_g * r_g * (g[l] - thetas[l, j])
thetas[:, j] += V[:, j]
policy = self.get_policy(theta=list(thetas[:, j]), L=L)
avg_metrics = self.eval_theta(
policy=policy, max_steps=self.experiment_config.hparams[
agents_constants.COMMON.MAX_ENV_STEPS].value)
J_t = round(avg_metrics[env_constants.ENV_METRICS.RETURN], 3)
if objective_type_param == ObjectiveType.MAX:
J_t = -J_t
policy = self.get_policy(theta=list(P[:, j]), L=L)
avg_metrics = self.eval_theta(
policy=policy, max_steps=self.experiment_config.hparams[
agents_constants.COMMON.MAX_ENV_STEPS].value)
J_p = round(avg_metrics[env_constants.ENV_METRICS.RETURN], 3)
if objective_type_param == ObjectiveType.MAX:
J_p = -J_p
if J_t < J_p:
P[:, j] = thetas[:, j]
policy = self.get_policy(theta=list(P[:, j]), L=L)
avg_metrics = self.eval_theta(policy=policy,
max_steps=self.experiment_config.hparams[
agents_constants.COMMON.MAX_ENV_STEPS].value)
J_p = round(avg_metrics[env_constants.ENV_METRICS.RETURN], 3)
if objective_type_param == ObjectiveType.MAX:
J_p = -J_p
policy = self.get_policy(theta=list(g), L=L)
avg_metrics = self.eval_theta(policy=policy,
max_steps=self.experiment_config.hparams[
agents_constants.COMMON.MAX_ENV_STEPS].value)
J_g = round(avg_metrics[env_constants.ENV_METRICS.RETURN], 3)
if objective_type_param == ObjectiveType.MAX:
J_g = -J_g
J = J_g
if J_p < J_g:
g = list(P[:, j])
policy = self.get_policy(theta=list(g), L=L)
avg_metrics = self.eval_theta(policy=policy,
max_steps=self.experiment_config.hparams[
agents_constants.COMMON.MAX_ENV_STEPS].value)
J_g = round(avg_metrics[env_constants.ENV_METRICS.RETURN], 3)
J = J_g
theta = g
iter_variable += 1
if objective_type_param == ObjectiveType.MAX:
J = -J
exp_result.all_metrics[seed][agents_constants.COMMON.AVERAGE_RETURN].append(J)
running_avg_J = ExperimentUtil.running_average(
exp_result.all_metrics[seed][agents_constants.COMMON.AVERAGE_RETURN],
self.experiment_config.hparams[agents_constants.COMMON.RUNNING_AVERAGE].value)
exp_result.all_metrics[seed][agents_constants.COMMON.AVERAGE_RETURN].append(J)
exp_result.all_metrics[seed][agents_constants.COMMON.RUNNING_AVERAGE_RETURN].append(running_avg_J)
# Log thresholds
exp_result.all_metrics[seed][agents_constants.PARTICLE_SWARM.THETAS].append(
ParticleSwarmAgent.round_vec(theta))
exp_result.all_metrics[seed][agents_constants.PARTICLE_SWARM.THRESHOLDS].append(
ParticleSwarmAgent.round_vec(policy.thresholds()))
# Log stop distribution
for k, v in policy.stop_distributions().items():
exp_result.all_metrics[seed][k].append(v)
# Log intrusion lengths
exp_result.all_metrics[seed][env_constants.ENV_METRICS.INTRUSION_LENGTH].append(
round(avg_metrics[env_constants.ENV_METRICS.INTRUSION_LENGTH], 3))
exp_result.all_metrics[seed][agents_constants.COMMON.RUNNING_AVERAGE_INTRUSION_LENGTH].append(
ExperimentUtil.running_average(
exp_result.all_metrics[seed][env_constants.ENV_METRICS.INTRUSION_LENGTH],
self.experiment_config.hparams[agents_constants.COMMON.RUNNING_AVERAGE].value))
# Log stopping times
exp_result.all_metrics[seed][env_constants.ENV_METRICS.INTRUSION_START].append(
round(avg_metrics[env_constants.ENV_METRICS.INTRUSION_START], 3))
exp_result.all_metrics[seed][agents_constants.COMMON.RUNNING_AVERAGE_INTRUSION_START].append(
ExperimentUtil.running_average(
exp_result.all_metrics[seed][env_constants.ENV_METRICS.INTRUSION_START],
self.experiment_config.hparams[agents_constants.COMMON.RUNNING_AVERAGE].value))
exp_result.all_metrics[seed][env_constants.ENV_METRICS.TIME_HORIZON].append(
round(avg_metrics[env_constants.ENV_METRICS.TIME_HORIZON], 3))
exp_result.all_metrics[seed][agents_constants.COMMON.RUNNING_AVERAGE_TIME_HORIZON].append(
ExperimentUtil.running_average(
exp_result.all_metrics[seed][env_constants.ENV_METRICS.TIME_HORIZON],
self.experiment_config.hparams[agents_constants.COMMON.RUNNING_AVERAGE].value))
for l in range(1, self.experiment_config.hparams[agents_constants.PARTICLE_SWARM.L].value + 1):
exp_result.plot_metrics.append(env_constants.ENV_METRICS.STOP + f"_{l}")
exp_result.all_metrics[seed][env_constants.ENV_METRICS.STOP + f"_{l}"].append(
round(avg_metrics[env_constants.ENV_METRICS.STOP + f"_{l}"], 3))
exp_result.all_metrics[seed][env_constants.ENV_METRICS.STOP + f"_running_average_{l}"].append(
ExperimentUtil.running_average(
exp_result.all_metrics[seed][env_constants.ENV_METRICS.STOP + f"_{l}"],
self.experiment_config.hparams[agents_constants.COMMON.RUNNING_AVERAGE].value))
# Log baseline returns
exp_result.all_metrics[seed][env_constants.ENV_METRICS.AVERAGE_UPPER_BOUND_RETURN].append(
round(avg_metrics[env_constants.ENV_METRICS.AVERAGE_UPPER_BOUND_RETURN], 3))
exp_result.all_metrics[seed][
env_constants.ENV_METRICS.AVERAGE_DEFENDER_BASELINE_STOP_ON_FIRST_ALERT_RETURN].append(
round(avg_metrics[env_constants.ENV_METRICS.AVERAGE_DEFENDER_BASELINE_STOP_ON_FIRST_ALERT_RETURN], 3))
if iter_variable % self.experiment_config.log_every == 0 and iter_variable > 0:
# Update training job
total_iterations = len(random_seeds) * N
iterations_done = (random_seeds.index(seed)) * N + iter_variable
progress = round(iterations_done / total_iterations, 2)
training_job.progress_percentage = progress
training_job.experiment_result = exp_result
if self.env is not None and len(self.env.get_traces()) > 0:
training_job.simulation_traces.append(self.env.get_traces()[-1])
if len(training_job.simulation_traces) > training_job.num_cached_traces:
training_job.simulation_traces = training_job.simulation_traces[1:]
if self.save_to_metastore:
MetastoreFacade.update_training_job(training_job=training_job, id=training_job.id)
# Update execution
ts = time.time()
self.exp_execution.timestamp = ts
self.exp_execution.result = exp_result
if self.save_to_metastore:
MetastoreFacade.update_experiment_execution(experiment_execution=self.exp_execution,
id=self.exp_execution.id)
Logger.__call__().get_logger().info(
f"[PARTICLE-SWARM] i: {iter_variable}, J:{J}, "
f"J_avg_{self.experiment_config.hparams[agents_constants.COMMON.RUNNING_AVERAGE].value}:"
f"{running_avg_J}, "
f"opt_J:{exp_result.all_metrics[seed][env_constants.ENV_METRICS.AVERAGE_UPPER_BOUND_RETURN][-1]}, "
f"int_len:{exp_result.all_metrics[seed][env_constants.ENV_METRICS.INTRUSION_LENGTH][-1]}, "
f"sigmoid(theta):{policy.thresholds()}, progress: {round(progress * 100, 2)}%, "
f"stop distributions:{policy.stop_distributions()}")
policy = self.get_policy(theta=list(theta), L=L)
exp_result.policies[seed] = policy
# Save policy
if self.save_to_metastore:
MetastoreFacade.save_multi_threshold_stopping_policy(multi_threshold_stopping_policy=policy)
return exp_result
[docs] def eval_theta(self, policy: Union[MultiThresholdStoppingPolicy, LinearThresholdStoppingPolicy],
max_steps: int = 200) -> Dict[str, Union[float, int]]:
"""
Evaluates a given threshold policy by running monte-carlo simulations
:param policy: the policy to evaluate
:return: the average metrics of the evaluation
"""
if self.env is None:
raise ValueError("Need to specify an environment to run policy evaluation")
eval_batch_size = self.experiment_config.hparams[agents_constants.COMMON.EVAL_BATCH_SIZE].value
metrics: Dict[str, Any] = {}
for j in range(eval_batch_size):
done = False
o, _ = self.env.reset()
l = int(o[0])
b1 = o[1]
t = 1
r = 0
a = 0
info: Dict[str, Any] = {}
while not done and t <= max_steps:
Logger.__call__().get_logger().debug(f"t:{t}, a: {a}, b1:{b1}, r:{r}, l:{l}, info:{info}")
if self.experiment_config.player_type == PlayerType.ATTACKER:
policy.opponent_strategy = self.env.static_defender_strategy
a = policy.action(o=o)
else:
a = policy.action(o=o)
o, r, done, _, info = self.env.step(a)
l = int(o[0])
b1 = o[1]
t += 1
metrics = ParticleSwarmAgent.update_metrics(metrics=metrics, info=info)
avg_metrics = ParticleSwarmAgent.compute_avg_metrics(metrics=metrics)
return avg_metrics
[docs] @staticmethod
def update_metrics(metrics: Dict[str, List[Union[float, int]]], info: Dict[str, Union[float, int]]) \
-> Dict[str, List[Union[float, int]]]:
"""
Update a dict with aggregated metrics using new information from the environment
:param metrics: the dict with the aggregated metrics
:param info: the new information
:return: the updated dict
"""
for k, v in info.items():
if k in metrics:
metrics[k].append(round(v, 3))
else:
metrics[k] = [v]
return metrics
[docs] @staticmethod
def compute_avg_metrics(metrics: Dict[str, List[Union[float, int]]]) -> Dict[str, Union[float, int]]:
"""
Computes the average metrics of a dict with aggregated metrics
:param metrics: the dict with the aggregated metrics
:return: the average metrics
"""
avg_metrics = {}
for k, v in metrics.items():
avg = round(sum(v) / len(v), 2)
avg_metrics[k] = avg
return avg_metrics
[docs] @staticmethod
def initial_theta(L: int, S: int, b_lo: Union[int, float],
b_up: Union[int, float]) -> Tuple[npt.NDArray[Any], npt.NDArray[Any]]:
"""
Initializes particle positions (thetas) randomly
:param L: the dimension of theta
:param S: the number of particles in the swarm
:param b_lo: lower boundary of randomization
:param b_up: upper boundary of randomization
:return: the initialized theta vector
"""
X = [[random.uniform(b_lo, b_up) for i in range(S)] for i in range(L)]
thetas = np.array(X)
P = np.zeros(np.shape(thetas))
for k in range(thetas.shape[0]):
for l in range(thetas.shape[1]):
P[k, l] = thetas[k, l]
return P, thetas
[docs] @staticmethod
def initial_velocity(L: int, S: int, b_lo: Union[int, float], b_up: Union[int, float]) -> npt.NDArray[Any]:
"""
Initializes the voleicities amongst each particle in the swarm
:param L: the dimension
:param S: the number of particles in the swarm
:param b_lo: lower boundary od randomization
:param b_up: upper boundary of randomization
"""
V = [[random.uniform(-abs(b_up - b_lo), abs(b_up - b_lo)) for i in range(S)] for k in range(L)]
V_np = np.array(V)
return V_np
[docs] def get_policy(self, theta: List[float], L: int) \
-> Union[MultiThresholdStoppingPolicy, LinearThresholdStoppingPolicy]:
"""
Gets the policy of a given parameter vector
:param theta: the parameter vector
:param L: the number of parameters
:return: the policy
"""
if self.experiment_config.hparams[agents_constants.PARTICLE_SWARM.POLICY_TYPE].value \
== PolicyType.MULTI_THRESHOLD.value:
policy = MultiThresholdStoppingPolicy(
theta=list(theta), simulation_name=self.simulation_env_config.name,
states=self.simulation_env_config.state_space_config.states,
player_type=self.experiment_config.player_type, L=L,
actions=self.simulation_env_config.joint_action_space_config.action_spaces[
self.experiment_config.player_idx].actions, experiment_config=self.experiment_config, avg_R=-1,
agent_type=AgentType.PARTICLE_SWARM)
else:
policy = LinearThresholdStoppingPolicy(
theta=list(theta), simulation_name=self.simulation_env_config.name,
states=self.simulation_env_config.state_space_config.states,
player_type=self.experiment_config.player_type, L=L,
actions=self.simulation_env_config.joint_action_space_config.action_spaces[
self.experiment_config.player_idx].actions, experiment_config=self.experiment_config, avg_R=-1,
agent_type=AgentType.PARTICLE_SWARM)
return policy
[docs] @staticmethod
def round_vec(vec) -> List[float]:
"""
Rounds a vector to 3 decimals
:param vec: the vector to round
:return: the rounded vector
"""
return list(map(lambda x: round(x, 3), vec))
[docs] def random_position(self, L: int, S, b_lo: float, b_up: float) -> npt.NDArray[Any]:
"""
Utility function to get a random position
:param L: the number of parameters
:param S: number of points
:param b_lo: lower bound
:param b_up: upper bound
:return: an array with the random coordinates
"""
X = [[random.uniform(b_lo, b_up) for _ in range(S)] for i in range(L)]
return np.array(X)