Source code for csle_agents.agents.reinforce.reinforce_agent

from typing import Union, List, Dict, Optional, Any
import math
import time
import gymnasium as gym
import os
import torch
import numpy as np
import gym_csle_stopping_game.constants.constants as env_constants
import csle_common.constants.constants as constants
from csle_common.dao.emulation_config.emulation_env_config import EmulationEnvConfig
from csle_common.dao.simulation_config.simulation_env_config import SimulationEnvConfig
from csle_common.dao.training.experiment_config import ExperimentConfig
from csle_common.dao.training.experiment_execution import ExperimentExecution
from csle_common.dao.training.experiment_result import ExperimentResult
from csle_common.dao.training.agent_type import AgentType
from csle_common.util.experiment_util import ExperimentUtil
from csle_common.logging.log import Logger
from csle_common.dao.training.fnn_with_softmax_policy import FNNWithSoftmaxPolicy
from csle_common.metastore.metastore_facade import MetastoreFacade
from csle_common.dao.jobs.training_job_config import TrainingJobConfig
from csle_common.models.fnn_w_softmax import FNNwithSoftmax
from csle_common.util.general_util import GeneralUtil
from csle_common.dao.simulation_config.base_env import BaseEnv
from csle_agents.agents.base.base_agent import BaseAgent
import csle_agents.constants.constants as agents_constants


[docs]class ReinforceAgent(BaseAgent): """ Reinforce Agent """ def __init__(self, simulation_env_config: SimulationEnvConfig, emulation_env_config: Union[None, EmulationEnvConfig], experiment_config: ExperimentConfig, env: Optional[BaseEnv] = None, training_job: Optional[TrainingJobConfig] = None, save_to_metastore: bool = True): """ Initializes the Reinforce Agent :param simulation_env_config: the simulation env config :param emulation_env_config: the emulation env config :param experiment_config: the experiment config :param env: (optional) the gym environment to use for simulation :param training_job: (optional) a training job configuration :param save_to_metastore: boolean flag that can be set to avoid saving results and progress to the metastore """ super().__init__(simulation_env_config=simulation_env_config, emulation_env_config=emulation_env_config, experiment_config=experiment_config) assert experiment_config.agent_type == AgentType.REINFORCE self.env = env self.training_job = training_job self.save_to_metastore = save_to_metastore self.machine_eps = np.finfo(np.float64).eps.item()
[docs] def train(self) -> ExperimentExecution: """ Performs the policy training for the given random seeds using reinforce :return: the training metrics and the trained policies """ pid = os.getpid() # Initialize metrics exp_result = ExperimentResult() exp_result.plot_metrics.append(agents_constants.COMMON.AVERAGE_RETURN) exp_result.plot_metrics.append(agents_constants.COMMON.RUNNING_AVERAGE_RETURN) exp_result.plot_metrics.append(agents_constants.COMMON.POLICY_LOSSES) exp_result.plot_metrics.append(env_constants.ENV_METRICS.INTRUSION_LENGTH) exp_result.plot_metrics.append(agents_constants.COMMON.RUNNING_AVERAGE_INTRUSION_LENGTH) exp_result.plot_metrics.append(env_constants.ENV_METRICS.INTRUSION_START) exp_result.plot_metrics.append(agents_constants.COMMON.RUNNING_AVERAGE_INTRUSION_START) exp_result.plot_metrics.append(env_constants.ENV_METRICS.TIME_HORIZON) exp_result.plot_metrics.append(agents_constants.COMMON.RUNNING_AVERAGE_TIME_HORIZON) exp_result.plot_metrics.append(env_constants.ENV_METRICS.AVERAGE_UPPER_BOUND_RETURN) exp_result.plot_metrics.append(env_constants.ENV_METRICS.AVERAGE_DEFENDER_BASELINE_STOP_ON_FIRST_ALERT_RETURN) descr = f"Training of policies with the random search algorithm using " \ f"simulation:{self.simulation_env_config.name}" for seed in self.experiment_config.random_seeds: exp_result.all_metrics[seed] = {} exp_result.all_metrics[seed][agents_constants.COMMON.AVERAGE_RETURN] = [] exp_result.all_metrics[seed][agents_constants.COMMON.RUNNING_AVERAGE_RETURN] = [] exp_result.all_metrics[seed][agents_constants.COMMON.POLICY_LOSSES] = [] exp_result.all_metrics[seed][agents_constants.COMMON.RUNNING_AVERAGE_INTRUSION_START] = [] exp_result.all_metrics[seed][agents_constants.COMMON.RUNNING_AVERAGE_TIME_HORIZON] = [] exp_result.all_metrics[seed][agents_constants.COMMON.RUNNING_AVERAGE_INTRUSION_LENGTH] = [] exp_result.all_metrics[seed][env_constants.ENV_METRICS.INTRUSION_START] = [] exp_result.all_metrics[seed][env_constants.ENV_METRICS.INTRUSION_LENGTH] = [] exp_result.all_metrics[seed][env_constants.ENV_METRICS.TIME_HORIZON] = [] exp_result.all_metrics[seed][env_constants.ENV_METRICS.AVERAGE_UPPER_BOUND_RETURN] = [] exp_result.all_metrics[seed][ env_constants.ENV_METRICS.AVERAGE_DEFENDER_BASELINE_STOP_ON_FIRST_ALERT_RETURN] = [] # Initialize training job if self.training_job is None: emulation_name = "" if self.emulation_env_config is not None: emulation_name = self.emulation_env_config.name self.training_job = TrainingJobConfig( simulation_env_name=self.simulation_env_config.name, experiment_config=self.experiment_config, progress_percentage=0, pid=pid, experiment_result=exp_result, emulation_env_name=emulation_name, simulation_traces=[], num_cached_traces=agents_constants.COMMON.NUM_CACHED_SIMULATION_TRACES, log_file_path=Logger.__call__().get_log_file_path(), descr=descr, physical_host_ip=GeneralUtil.get_host_ip()) if self.save_to_metastore: training_job_id = MetastoreFacade.save_training_job(training_job=self.training_job) self.training_job.id = training_job_id else: self.training_job.pid = pid self.training_job.progress_percentage = 0 self.training_job.experiment_result = exp_result if self.save_to_metastore: MetastoreFacade.update_training_job(training_job=self.training_job, id=self.training_job.id) # Initialize execution result ts = time.time() emulation_name = "" if self.emulation_env_config is not None: emulation_name = self.emulation_env_config.name simulation_name = self.simulation_env_config.name self.exp_execution = ExperimentExecution(result=exp_result, config=self.experiment_config, timestamp=ts, emulation_name=emulation_name, simulation_name=simulation_name, descr=descr, log_file_path=self.training_job.log_file_path) if self.save_to_metastore: exp_execution_id = MetastoreFacade.save_experiment_execution(self.exp_execution) self.exp_execution.id = exp_execution_id config = self.simulation_env_config.simulation_env_input_config if self.env is None: self.env = gym.make(self.simulation_env_config.gym_env_name, config=config) for seed in self.experiment_config.random_seeds: ExperimentUtil.set_seed(seed) exp_result = self.reinforce(exp_result=exp_result, seed=seed, training_job=self.training_job, random_seeds=self.experiment_config.random_seeds) # Save latest trace if self.save_to_metastore: MetastoreFacade.save_simulation_trace(self.env.get_traces()[-1]) self.env.reset_traces() # Calculate average and std metrics exp_result.avg_metrics = {} exp_result.std_metrics = {} for metric in exp_result.all_metrics[self.experiment_config.random_seeds[0]].keys(): value_vectors = [] for seed in self.experiment_config.random_seeds: value_vectors.append(exp_result.all_metrics[seed][metric]) avg_metrics = [] std_metrics = [] for i in range(len(value_vectors[0])): if type(value_vectors[0][0]) is int or type(value_vectors[0][0]) is float \ or type(value_vectors[0][0]) is np.int64 or type(value_vectors[0][0]) is np.float64: seed_values = [] for seed_idx in range(len(self.experiment_config.random_seeds)): seed_values.append(value_vectors[seed_idx][i]) avg = ExperimentUtil.mean_confidence_interval( data=seed_values, confidence=self.experiment_config.hparams[agents_constants.COMMON.CONFIDENCE_INTERVAL].value)[0] if not math.isnan(avg): avg_metrics.append(avg) ci = ExperimentUtil.mean_confidence_interval( data=seed_values, confidence=self.experiment_config.hparams[agents_constants.COMMON.CONFIDENCE_INTERVAL].value)[1] if not math.isnan(ci): std_metrics.append(ci) else: std_metrics.append(-1) else: avg_metrics.append(-1) std_metrics.append(-1) exp_result.avg_metrics[metric] = avg_metrics exp_result.std_metrics[metric] = std_metrics traces = self.env.get_traces() if len(traces) > 0 and self.save_to_metastore: MetastoreFacade.save_simulation_trace(traces[-1]) ts = time.time() self.exp_execution.timestamp = ts self.exp_execution.result = exp_result if self.save_to_metastore: MetastoreFacade.update_experiment_execution(experiment_execution=self.exp_execution, id=self.exp_execution.id) return self.exp_execution
[docs] def hparam_names(self) -> List[str]: """ :return: a list with the hyperparameter names """ return [agents_constants.REINFORCE.N, agents_constants.COMMON.EVAL_BATCH_SIZE, agents_constants.COMMON.CONFIDENCE_INTERVAL, agents_constants.COMMON.RUNNING_AVERAGE, agents_constants.COMMON.LEARNING_RATE_DECAY_RATE, agents_constants.COMMON.LEARNING_RATE_EXP_DECAY, constants.NEURAL_NETWORKS.NUM_HIDDEN_LAYERS, constants.NEURAL_NETWORKS.NUM_NEURONS_PER_HIDDEN_LAYER, constants.NEURAL_NETWORKS.ACTIVATION_FUNCTION, agents_constants.COMMON.OPTIMIZER]
[docs] def reinforce(self, exp_result: ExperimentResult, seed: int, training_job: TrainingJobConfig, random_seeds: List[int]) -> ExperimentResult: """ Runs the random search algorithm :param exp_result: the experiment result object to store the result :param seed: the seed :param training_job: the training job config :param random_seeds: list of seeds :return: the updated experiment result and the trained policy """ if self.env is None: raise ValueError("Need to specify an environment to run Reinforce") # Hyperparameters N = self.experiment_config.hparams[agents_constants.REINFORCE.N].value # Setup policy network policy_network = FNNwithSoftmax( input_dim=self.env.observation_space.shape[0], output_dim=self.env.action_space.n, hidden_dim=self.experiment_config.hparams[constants.NEURAL_NETWORKS.NUM_NEURONS_PER_HIDDEN_LAYER].value, num_hidden_layers=self.experiment_config.hparams[constants.NEURAL_NETWORKS.NUM_HIDDEN_LAYERS].value, hidden_activation=self.experiment_config.hparams[constants.NEURAL_NETWORKS.ACTIVATION_FUNCTION].value ) # Setup device policy_network.to(torch.device(self.experiment_config.hparams[constants.NEURAL_NETWORKS.DEVICE].value)) optimizer: Union[torch.optim.Adam, torch.optim.SGD, None] = None # Setup optimizer if self.experiment_config.hparams[agents_constants.COMMON.OPTIMIZER].value == agents_constants.COMMON.ADAM: optimizer = torch.optim.Adam( policy_network.parameters(), lr=self.experiment_config.hparams[agents_constants.COMMON.LEARNING_RATE].value) elif self.experiment_config.hparams[agents_constants.COMMON.OPTIMIZER].value == agents_constants.COMMON.SGD: optimizer = torch.optim.SGD( policy_network.parameters(), lr=self.experiment_config.hparams[agents_constants.COMMON.LEARNING_RATE].value) else: raise ValueError(f"Optimizer: {self.experiment_config.hparams[agents_constants.COMMON.OPTIMIZER].value}" f" not recognized") for i in range(N): rewards_batch = [] log_probs_batch = [] metrics: Dict[str, Any] = {} ts = time.time() save_path = f"{self.experiment_config.output_dir}/reinforce_policy_seed_{seed}_{ts}.zip" policy = FNNWithSoftmaxPolicy( policy_network=policy_network, simulation_name=self.simulation_env_config.name, save_path=save_path, states=self.simulation_env_config.state_space_config.states, actions=self.simulation_env_config.joint_action_space_config.action_spaces[ self.experiment_config.player_idx].actions, player_type=self.experiment_config.player_type, experiment_config=self.experiment_config, avg_R=-1, input_dim=policy_network.input_dim, output_dim=policy_network.output_dim) policy.save_policy_network() # Run a batch of rollouts for j in range(self.experiment_config.hparams[agents_constants.REINFORCE.GRADIENT_BATCH_SIZE].value): cumulative_reward = 0.0 rewards = [] log_probs = [] done = False o, _ = self.env.reset() while not done: # get action action, log_prob = policy.get_action_and_log_prob(state=o) # Take a step in the environment o_prime, reward, done, _, info = self.env.step(action) # Update metrics cumulative_reward += reward rewards.append(cumulative_reward) log_probs.append(log_prob) # Move to the next state o = o_prime # Accumulate batch rewards_batch.append(rewards) log_probs_batch.append(log_probs) metrics = ReinforceAgent.update_metrics(metrics=metrics, info=info) avg_metrics = ReinforceAgent.compute_avg_metrics(metrics=metrics) # Perform Batch Policy Gradient updates loss_tensor = self.training_step(saved_rewards=rewards_batch, saved_log_probs=log_probs_batch, policy_network=policy_network, optimizer=optimizer, gamma=self.experiment_config.hparams[agents_constants.COMMON.GAMMA].value) loss = loss_tensor.item() # Log metrics J = round(avg_metrics[env_constants.ENV_METRICS.RETURN], 3) policy.avg_R = J exp_result.all_metrics[seed][agents_constants.COMMON.AVERAGE_RETURN].append(J) exp_result.all_metrics[seed][agents_constants.COMMON.POLICY_LOSSES].append(loss) running_avg_J = ExperimentUtil.running_average( exp_result.all_metrics[seed][agents_constants.COMMON.AVERAGE_RETURN], self.experiment_config.hparams[agents_constants.COMMON.RUNNING_AVERAGE].value) exp_result.all_metrics[seed][agents_constants.COMMON.RUNNING_AVERAGE_RETURN].append(running_avg_J) # Log intrusion lengths exp_result.all_metrics[seed][env_constants.ENV_METRICS.INTRUSION_LENGTH].append( round(avg_metrics[env_constants.ENV_METRICS.INTRUSION_LENGTH], 3)) exp_result.all_metrics[seed][agents_constants.COMMON.RUNNING_AVERAGE_INTRUSION_LENGTH].append( ExperimentUtil.running_average( exp_result.all_metrics[seed][env_constants.ENV_METRICS.INTRUSION_LENGTH], self.experiment_config.hparams[agents_constants.COMMON.RUNNING_AVERAGE].value)) # Log stopping times exp_result.all_metrics[seed][env_constants.ENV_METRICS.INTRUSION_START].append( round(avg_metrics[env_constants.ENV_METRICS.INTRUSION_START], 3)) exp_result.all_metrics[seed][agents_constants.COMMON.RUNNING_AVERAGE_INTRUSION_START].append( ExperimentUtil.running_average( exp_result.all_metrics[seed][env_constants.ENV_METRICS.INTRUSION_START], self.experiment_config.hparams[agents_constants.COMMON.RUNNING_AVERAGE].value)) exp_result.all_metrics[seed][env_constants.ENV_METRICS.TIME_HORIZON].append( round(avg_metrics[env_constants.ENV_METRICS.TIME_HORIZON], 3)) exp_result.all_metrics[seed][agents_constants.COMMON.RUNNING_AVERAGE_TIME_HORIZON].append( ExperimentUtil.running_average( exp_result.all_metrics[seed][env_constants.ENV_METRICS.TIME_HORIZON], self.experiment_config.hparams[agents_constants.COMMON.RUNNING_AVERAGE].value)) # Log baseline returns exp_result.all_metrics[seed][env_constants.ENV_METRICS.AVERAGE_UPPER_BOUND_RETURN].append( round(avg_metrics[env_constants.ENV_METRICS.AVERAGE_UPPER_BOUND_RETURN], 3)) exp_result.all_metrics[seed][ env_constants.ENV_METRICS.AVERAGE_DEFENDER_BASELINE_STOP_ON_FIRST_ALERT_RETURN].append( round(avg_metrics[env_constants.ENV_METRICS.AVERAGE_DEFENDER_BASELINE_STOP_ON_FIRST_ALERT_RETURN], 3)) if i % self.experiment_config.log_every == 0 and i > 0: # Update training job total_iterations = len(random_seeds) * N iterations_done = (random_seeds.index(seed)) * N + i progress = round(iterations_done / total_iterations, 2) training_job.progress_percentage = progress training_job.experiment_result = exp_result if len(self.env.get_traces()) > 0: training_job.simulation_traces.append(self.env.get_traces()[-1]) if len(training_job.simulation_traces) > training_job.num_cached_traces: training_job.simulation_traces = training_job.simulation_traces[1:] if self.save_to_metastore: MetastoreFacade.update_training_job(training_job=training_job, id=training_job.id) # Update execution ts = time.time() self.exp_execution.timestamp = ts self.exp_execution.result = exp_result if self.save_to_metastore: MetastoreFacade.update_experiment_execution(experiment_execution=self.exp_execution, id=self.exp_execution.id) Logger.__call__().get_logger().info( f"[REINFORCE] i: {i}, J:{J}, " f"J_avg_{self.experiment_config.hparams[agents_constants.COMMON.RUNNING_AVERAGE].value}:" f"{running_avg_J}, " f"opt_J:{exp_result.all_metrics[seed][env_constants.ENV_METRICS.AVERAGE_UPPER_BOUND_RETURN][-1]}, " f"int_len:{exp_result.all_metrics[seed][env_constants.ENV_METRICS.INTRUSION_LENGTH][-1]}, " f"progress: {round(progress * 100, 2)}%") ts = time.time() save_path = f"{self.experiment_config.output_dir}/ppo_policy_seed_{seed}_{ts}.zip" policy = FNNWithSoftmaxPolicy( policy_network=policy_network, simulation_name=self.simulation_env_config.name, save_path=save_path, states=self.simulation_env_config.state_space_config.states, actions=self.simulation_env_config.joint_action_space_config.action_spaces[ self.experiment_config.player_idx].actions, player_type=self.experiment_config.player_type, experiment_config=self.experiment_config, avg_R=exp_result.all_metrics[seed][agents_constants.COMMON.AVERAGE_RETURN][-1], input_dim=policy_network.input_dim, output_dim=policy_network.output_dim) policy.save_policy_network() exp_result.policies[seed] = policy # Save policy if self.save_to_metastore: MetastoreFacade.save_fnn_w_softmax_policy(fnn_w_softmax_policy=policy) return exp_result
[docs] @staticmethod def update_metrics(metrics: Dict[str, List[Union[float, int]]], info: Dict[str, Union[float, int]]) \ -> Dict[str, List[Union[float, int]]]: """ Update a dict with aggregated metrics using new information from the environment :param metrics: the dict with the aggregated metrics :param info: the new information :return: the updated dict """ for k, v in info.items(): if k in metrics: metrics[k].append(round(v, 3)) else: metrics[k] = [v] return metrics
[docs] @staticmethod def compute_avg_metrics(metrics: Dict[str, List[Union[float, int]]]) -> Dict[str, Union[float, int]]: """ Computes the average metrics of a dict with aggregated metrics :param metrics: the dict with the aggregated metrics :return: the average metrics """ avg_metrics = {} for k, v in metrics.items(): avg = round(sum(v) / len(v), 2) avg_metrics[k] = avg return avg_metrics
[docs] @staticmethod def round_vec(vec) -> List[float]: """ Rounds a vector to 3 decimals :param vec: the vector to round :return: the rounded vector """ return list(map(lambda x: round(x, 3), vec))
[docs] def training_step(self, saved_rewards: List[List[float]], saved_log_probs: List[List[torch.Tensor]], policy_network: FNNwithSoftmax, optimizer: torch.optim.Optimizer, gamma: float) -> torch.Tensor: """ Performs a training step of the REINFORCE algorithm :param saved_rewards: list of rewards encountered in the latest episode trajectory :param saved_log_probs: list of log-action probabilities (log p(a|s)) encountered in the latest episode trajectory :param policy_network: the policy network :param optimizer: the optimizer for updating the weights :param gamma: the discount factor :return: loss """ policy_loss = [] num_batches = len(saved_rewards) for batch in range(num_batches): R = 0.0 returns: List[float] = [] # Create discounted returns. When episode is finished we can go back and compute the observed cumulative # discounted reward by using the observed rewards for r in saved_rewards[batch][::-1]: R = r + gamma * R returns.insert(0, R) num_rewards = len(returns) # convert list to torch tensor returns_tensor = torch.tensor(returns) # normalize std = float(returns_tensor.std()) if num_rewards < 2: std = 0.0 returns_tensor = (returns_tensor - returns_tensor.mean()) / (std + self.machine_eps) # Compute PG "loss" which in reality is the expected reward, which we want to maximize with gradient ascent for log_prob, R in zip(saved_log_probs[batch], returns_tensor): # negative log prob since we are doing gradient descent (not ascent) policy_loss.append(-log_prob * R) # Compute gradient and update models # reset gradients optimizer.zero_grad() # expected loss over the batch policy_loss_total = torch.stack(policy_loss).sum() policy_loss_val = policy_loss_total / num_batches # perform backprop policy_loss_val.backward() # gradient descent step optimizer.step() return policy_loss_val