Source code for csle_common.dao.system_identification.gp_conditional

from typing import List, Dict, Any, Union
import gpytorch
from numpy.typing import NDArray
import torch
from csle_common.dao.system_identification.gp_regression_model_with_gauissan_noise import \
    GPRegressionModelWithGaussianNoise
from csle_base.json_serializable import JSONSerializable


[docs]class GPConditional(JSONSerializable): """ A DTO representing a Gaussian process conditional distribution """ def __init__(self, conditional_name: str, metric_name: str, sample_space: List[int], observed_x: List[Union[float, int]], observed_y: List[Union[float, int]], scale_parameter: float, noise_parameter: float) -> None: """ Initializes the DTO :param conditional_name: the name of the conditional :param metric_name: the name of the metric :param sample_space: the sample space (the domain of the distribution) :param observed_x: the observed x samples :param observed_y: the observed y samples :param scale_parameter: the scale parameter for the scale kernel :param noise_parameter: the noise parameter for the Gaussian noise likelihood """ self.conditional_name = conditional_name self.metric_name = metric_name self.sample_space = sample_space self.observed_x = observed_x self.observed_y = observed_y self.scale_parameter = scale_parameter self.noise_parameter = noise_parameter self.distribution: List[NDArray[Any]] = []
[docs] @staticmethod def from_dict(d: Dict[str, Any]) -> "GPConditional": """ Converts a dict representation of the DTO into an instance :param d: the dict to convert :return: the converted instance """ return GPConditional( conditional_name=d["conditional_name"], metric_name=d["metric_name"], sample_space=d["sample_space"], observed_x=d["observed_x"], observed_y=d["observed_y"], scale_parameter=d["scale_parameter"], noise_parameter=d["noise_parameter"] )
[docs] def to_dict(self) -> Dict[str, Any]: """ :return: a dict representation of the DTO """ d: Dict[str, Any] = {} d["conditional_name"] = self.conditional_name d["metric_name"] = self.metric_name d["sample_space"] = self.sample_space d["observed_x"] = self.observed_x d["observed_y"] = self.observed_y d["scale_parameter"] = self.scale_parameter d["noise_parameter"] = self.noise_parameter d["distribution"] = self.distribution return d
def __str__(self) -> str: """ :return: a string representation of the DTO """ return f"conditional_name:{self.conditional_name}, metric_name: {self.metric_name}, " \ f"sample_space: {self.sample_space}, observed_x: {self.observed_x}, observed_y: {self.observed_y}," \ f"scale_parameter: {self.scale_parameter}, noise_parameter: {self.noise_parameter}"
[docs] @staticmethod def from_json_file(json_file_path: str) -> "GPConditional": """ Reads a json file and converts it to a DTO :param json_file_path: the json file path :return: the converted DTO """ import io import json with io.open(json_file_path, 'r') as f: json_str = f.read() return GPConditional.from_dict(json.loads(json_str))
[docs] def generate_distribution(self) -> None: """ Updates the distribution :return: None """ self.sample_space.sort() self.distribution = list(self.generate_distributions_for_samples(samples=self.sample_space).tolist())
[docs] def generate_distributions_for_samples(self, samples) -> Any: """ Generates distributions for a given sample :param samples: the sample :return: the created distributions """ samples = torch.tensor(samples) likelihood = gpytorch.likelihoods.GaussianLikelihood() model = GPRegressionModelWithGaussianNoise(torch.tensor(self.observed_x), torch.tensor(self.observed_y), likelihood) model.covar_module.base_kernel.lengthscale = torch.tensor(self.scale_parameter) model.likelihood.noise = torch.tensor(self.noise_parameter) model.eval() likelihood.eval() # Make predictions by feeding model through likelihood with torch.no_grad(), gpytorch.settings.fast_pred_var(): test_x = torch.tensor(samples) dist = likelihood(model(test_x)).mean.numpy() return dist