Source code for csle_common.dao.training.alpha_vectors_policy

from typing import Union, List, Dict, Any
import numpy as np
from csle_common.dao.training.agent_type import AgentType
from csle_common.dao.training.player_type import PlayerType
from csle_common.dao.training.policy import Policy
from csle_common.dao.simulation_config.action import Action
from csle_common.dao.simulation_config.state import State
from csle_common.dao.training.policy_type import PolicyType


[docs]class AlphaVectorsPolicy(Policy): """ Object representing a policy based on alpha vectors for a POMDP (Sondik 1971) """ def __init__(self, player_type: PlayerType, actions: List[Action], alpha_vectors: List[Any], transition_tensor: List[Any], reward_tensor: List[Any], states: List[State], agent_type: AgentType, simulation_name: str, avg_R: float) -> None: """ Initializes the policy :param actions: list of actions :param states: list of states :param player_type: the player type :param alpha_vectors: the lookup table that defines the policy :param value_function: the value function (optional) :param simulation_name: the name of the simulation :param avg_R: average reward obtained with the policy :param transition_tensor: the transition tensor of the POMDP :param reward_tensor: the reward tensor of the POMDP """ super(AlphaVectorsPolicy, self).__init__(agent_type=agent_type, player_type=player_type) self.actions = actions self.alpha_vectors = alpha_vectors self.simulation_name = simulation_name self.id = -1 self.avg_R = avg_R self.transition_tensor = transition_tensor self.reward_tensor = reward_tensor self.states = states self.policy_type = PolicyType.ALPHA_VECTORS
[docs] def action(self, o: List[Union[int, float]], deterministic: bool = True) -> int: """ Selects the next action :param o: the belief :param deterministic: boolean flag indicating whether the action selection should be deterministic :return: the next action and its probability """ b = o max_a_v = -np.inf for a in self.actions: v_a = 0 for s in self.states: for s_prime in self.states: transition_prob = (b[s.id] * self.reward_tensor[a.id][s.id] * self.transition_tensor[a.id][s.id][s_prime.id]) max_alpha_v = -np.inf for alpha in self.alpha_vectors: v = np.dot(np.array(alpha), np.array(b[0:len(alpha)])) if v > max_alpha_v: max_alpha_v = v v_a += max_alpha_v * transition_prob if v_a > max_a_v: max_a_v = v_a max_a = a try: return max_a.id except Exception: return 0
[docs] def probability(self, o: List[Union[int, float]], a: int) -> float: """ Calculates the probability of taking a given action for a given observation :param o: the input observation :param a: the action :return: p(a|o) """ return a == self.action(o=o)
[docs] @staticmethod def from_dict(d: Dict[str, Any]) -> "AlphaVectorsPolicy": """ Converts a dict representation to an instance :param d: the dict to convert :return: the created instance """ dto = AlphaVectorsPolicy(actions=list(map(lambda x: Action.from_dict(x), d["actions"])), player_type=d["player_type"], agent_type=d["agent_type"], alpha_vectors=d["alpha_vectors"], simulation_name=d["simulation_name"], avg_R=d["avg_R"], transition_tensor=d["transition_tensor"], reward_tensor=d["reward_tensor"], states=list(map(lambda x: State.from_dict(x), d["states"]))) if "id" in d: dto.id = d["id"] return dto
[docs] def to_dict(self) -> Dict[str, Any]: """ :return: A dict representation of the function """ d: Dict[str, Any] = {} d["agent_type"] = self.agent_type d["player_type"] = self.player_type d["actions"] = list(map(lambda x: x.to_dict(), self.actions)) d["alpha_vectors"] = self.alpha_vectors d["simulation_name"] = self.simulation_name d["id"] = self.id d["avg_R"] = self.avg_R d["transition_tensor"] = self.transition_tensor d["states"] = list(map(lambda x: x.to_dict(), self.states)) d["reward_tensor"] = self.reward_tensor d["policy_type"] = self.policy_type return d
[docs] def stage_policy(self, o: Union[List[Union[int, float]], int, float]) -> List[List[float]]: """ Gets the stage policy, i.e a |S|x|A| policy :param o: the latest observation :return: the |S|x|A| stage policy """ return self.alpha_vectors
def __str__(self) -> str: """ :return: a string representation of the policy """ return f"agent_type: {self.agent_type}, player_type: {self.player_type}, " \ f"actions: {list(map(lambda x: str(x), self.actions))}, alpha_vectors: {self.alpha_vectors}, " \ f"simulation_name: {self.simulation_name}, id: {self.id}, avg_R: {self.avg_R}," \ f"transition_tensor: {self.transition_tensor}, states: {self.states}, " \ f"reward_tensor: {self.reward_tensor}, policy_type: {self.policy_type}"
[docs] @staticmethod def from_json_file(json_file_path: str) -> "AlphaVectorsPolicy": """ Reads a json file and converts it to a DTO :param json_file_path: the json file path :return: the converted DTO """ import io import json with io.open(json_file_path, 'r') as f: json_str = f.read() return AlphaVectorsPolicy.from_dict(json.loads(json_str))
[docs] def copy(self) -> "AlphaVectorsPolicy": """ :return: a copy of the DTO """ return AlphaVectorsPolicy.from_dict(self.to_dict())