Source code for csle_common.dao.training.mixed_linear_tabular

from typing import List, Dict, Union, Any
import numpy as np
from numpy.typing import NDArray
import iteround
from csle_common.dao.training.policy import Policy
from csle_common.dao.training.agent_type import AgentType
from csle_common.dao.training.player_type import PlayerType
from csle_common.dao.simulation_config.state import State
from csle_common.dao.simulation_config.action import Action
from csle_common.dao.training.experiment_config import ExperimentConfig
from csle_common.dao.training.policy_type import PolicyType
from csle_common.dao.training.linear_tabular_policy import LinearTabularPolicy


[docs]class MixedLinearTabularPolicy(Policy): """ A mixed policy using an ensemble of linear tabulat policies """ def __init__(self, simulation_name: str, player_type: PlayerType, states: List[State], actions: List[Action], experiment_config: ExperimentConfig, avg_R: float): """ Initializes the policy :param simulation_name: the simulation name :param states: list of states (required for computing stage policies) :param actions: list of actions :param experiment_config: the experiment configuration for training the policy :param avg_R: the average reward of the policy when evaluated in the simulation """ super(MixedLinearTabularPolicy, self).__init__(agent_type=AgentType.DFSP_LOCAL, player_type=player_type) self.linear_tabular_policies: List[LinearTabularPolicy] = [] self.id = -1 self.simulation_name = simulation_name self.states = states self.actions = actions self.experiment_config = experiment_config self.avg_R = avg_R self.policy_type = PolicyType.MIXED_LINEAR_TABULAR
[docs] def action(self, o: List[float], deterministic: bool = True) -> Union[int, List[int], float, NDArray[Any]]: """ Multi-threshold stopping policy :param o: the current observation :param deterministic: boolean flag indicating whether the action selection should be deterministic :return: the selected action """ policy = np.random.choice(self.linear_tabular_policies) a = policy.action(o=o) return float(a)
[docs] def probability(self, o: List[float], a: int) -> int: """ Probability of a given action :param o: the current observation :param a: a given action :return: the probability of a """ return self.action(o=o) == a
[docs] def to_dict(self) -> Dict[str, Any]: """ :return: a dict representation of the policy """ d: Dict[str, Any] = {} d["id"] = self.id d["simulation_name"] = self.simulation_name d["linear_tabular_policies"] = list(map(lambda x: x.to_dict(), self.linear_tabular_policies)) d["states"] = list(map(lambda x: x.to_dict(), self.states)) d["player_type"] = self.player_type d["actions"] = list(map(lambda x: x.to_dict(), self.actions)) d["experiment_config"] = self.experiment_config.to_dict() d["agent_type"] = self.agent_type d["avg_R"] = self.avg_R d["policy_type"] = self.policy_type return d
[docs] @staticmethod def from_dict(d: Dict[str, Any]) -> "MixedLinearTabularPolicy": """ Converst a dict representation of the object to an instance :param d: the dict to convert :return: the created instance """ linear_tabular_policies = list(map(lambda x: x.from_dict(), d["linear_tabular_policies"])) obj = MixedLinearTabularPolicy(simulation_name=d["simulation_name"], states=list(map(lambda x: State.from_dict(x), d["states"])), player_type=d["player_type"], actions=list(map(lambda x: Action.from_dict(x), d["actions"])), experiment_config=ExperimentConfig.from_dict(d["experiment_config"]), avg_R=d["avg_R"]) obj.linear_tabular_policies = linear_tabular_policies obj.id = d["id"] return obj
def __str__(self) -> str: """ :return: a string representation of the object """ return f"linear_tabular_policies: {self.linear_tabular_policies}, id: {self.id}, " \ f"simulation_name: {self.simulation_name}, " \ f"states: {self.states}, experiment_config: {self.experiment_config}," \ f"avg_R: {self.avg_R}, policy type: {self.policy_type}"
[docs] @staticmethod def from_json_file(json_file_path: str) -> "MixedLinearTabularPolicy": """ Reads a json file and converts it to a DTO :param json_file_path: the json file path :return: the converted DTO """ import io import json with io.open(json_file_path, 'r') as f: json_str = f.read() return MixedLinearTabularPolicy.from_dict(json.loads(json_str))
[docs] def copy(self) -> "MixedLinearTabularPolicy": """ :return: a copy of the DTO """ return self.from_dict(self.to_dict())
[docs] def stage_policy(self, o: Union[List[Union[int, float]], int, float]) -> List[List[float]]: """ Returns the stage policy for a given observation :param o: the observation to return the stage policy for :return: the stage policy """ stage_policies = [] for policy in self.linear_tabular_policies: stage_policies.append(policy.stage_policy(o=o)) stage_strategy = np.zeros((len(self.states), len(self.actions))) for i, s_a in enumerate(self.states): for j, a in enumerate(self.actions): stage_strategy[i][j] = sum([stage_policies[k][i][j] for k in range(len(stage_policies))]) / len(stage_policies) stage_strategy[i] = iteround.saferound(stage_strategy[i], 2) return list(stage_strategy.tolist())