Source code for csle_system_identification.empirical.empirical_algorithm

from typing import List, Optional
import os
import numpy as np
from csle_system_identification.base.base_system_identification_algorithm import BaseSystemIdentificationAlgorithm
from csle_common.dao.emulation_config.emulation_env_config import EmulationEnvConfig
from csle_common.dao.system_identification.emulation_statistics import EmulationStatistics
from csle_common.dao.system_identification.system_identification_config import SystemIdentificationConfig
from csle_common.dao.system_identification.empirical_system_model import EmpiricalSystemModel
from csle_common.dao.system_identification.empirical_conditional import EmpiricalConditional
from csle_common.dao.jobs.system_identification_job_config import SystemIdentificationJobConfig
from csle_common.metastore.metastore_facade import MetastoreFacade
from csle_common.logging.log import Logger
from csle_common.util.general_util import GeneralUtil
import csle_system_identification.constants.constants as system_identification_constants


[docs]class EmpiricalAlgorithm(BaseSystemIdentificationAlgorithm): """ Class that implements the system identification procedure using empirical distributions """ def __init__(self, emulation_env_config: EmulationEnvConfig, emulation_statistics: EmulationStatistics, system_identification_config: SystemIdentificationConfig, system_identification_job: Optional[SystemIdentificationJobConfig] = None): """ Initializes the algorithm :param emulation_env_config: the configuration of the emulation environment :param emulation_statistics: the statistics to fit :param system_identification_config: configuration of EM :param system_identification_job: system identification job config (optional) """ super(EmpiricalAlgorithm, self).__init__( emulation_env_config=emulation_env_config, emulation_statistics=emulation_statistics, system_identification_config=system_identification_config ) self.system_identification_job = system_identification_job
[docs] def fit(self) -> EmpiricalSystemModel: """ Fits an empirical distribution for each conditional and metric :return: the fitted model """ if self.emulation_env_config is None: raise ValueError("Emulation config cannot be None") # Setup system identification job pid = os.getpid() descr = f"System identification through empirical distributions, " \ f"emulation:{self.emulation_env_config.name}, statistic id: {self.emulation_statistics.id}" if self.system_identification_job is None: self.system_identification_job = SystemIdentificationJobConfig( emulation_env_name=self.emulation_env_config.name, emulation_statistics_id=self.emulation_statistics.id, pid=pid, progress_percentage=0, log_file_path=Logger.__call__().get_log_file_path(), descr=descr, system_model=None, system_identification_config=self.system_identification_config, physical_host_ip=GeneralUtil.get_host_ip() ) system_identification_job_id = MetastoreFacade.save_system_identification_job( system_identification_job=self.system_identification_job) self.system_identification_job.id = system_identification_job_id else: self.system_identification_job.pid = pid self.system_identification_job.progress_percentage = 0 self.system_identification_job.system_model = None MetastoreFacade.update_system_identification_job(system_identification_job=self.system_identification_job, id=self.system_identification_job.id) # Fit the empirical distributions for each conditional and metric conditionals = self.system_identification_config.hparams[ system_identification_constants.SYSTEM_IDENTIFICATION.CONDITIONAL_DISTRIBUTIONS].value metrics = self.system_identification_config.hparams[ system_identification_constants.SYSTEM_IDENTIFICATION.METRICS].value Logger.__call__().get_logger().info(f"Starting execution of the empirical algorithm. " f"Emulation env name: {self.emulation_env_config.name}, " f"emulation_statistic_id: {self.emulation_statistics.id}," f"conditionals: {conditionals}, metrics: {metrics}") empirical_conditionals = [] complete_sample_space = set() for i, conditional in enumerate(conditionals): for j, metric in enumerate(metrics): counts = self.emulation_statistics.conditionals_counts[conditional][metric] for val, count in counts.items(): complete_sample_space.add(val) for i, conditional in enumerate(conditionals): empirical_conditionals_metrics = [] for j, metric in enumerate(metrics): self.emulation_statistics.compute_descriptive_statistics_and_distributions() sample_space = list(complete_sample_space) probs = list(np.zeros(len(complete_sample_space))) for val, prob in self.emulation_statistics.conditionals_probs[conditional][metric].items(): idx = sample_space.index(val) probs[idx] = prob empirical_conditionals_metrics.append(EmpiricalConditional( conditional_name=conditional, metric_name=metric, sample_space=sample_space, probabilities=probs )) empirical_conditionals.append(empirical_conditionals_metrics) model_descr = f"Model fitted through empirical algorithm, " \ f"emulation:{self.emulation_env_config.name}, statistic id: {self.emulation_statistics.id}" model = EmpiricalSystemModel( emulation_env_name=self.emulation_env_config.name, emulation_statistic_id=self.emulation_statistics.id, conditional_metric_distributions=empirical_conditionals, descr=model_descr) self.system_identification_job.system_model = model self.system_identification_job.progress_percentage = 100 MetastoreFacade.update_system_identification_job(system_identification_job=self.system_identification_job, id=self.system_identification_job.id) Logger.__call__().get_logger().info(f"Execution of the empirical algorithm complete." f"Emulation env name: {self.emulation_env_config.name}, " f"emulation_statistic_id: {self.emulation_statistics.id}," f"conditionals: {conditionals}, metrics: {metrics}") return model
[docs] def hparam_names(self) -> List[str]: """ :return: the names of the necessary hyperparameters """ return [ system_identification_constants.SYSTEM_IDENTIFICATION.CONDITIONAL_DISTRIBUTIONS, system_identification_constants.SYSTEM_IDENTIFICATION.METRICS ]