Source code for gym_csle_apt_game.envs.apt_game_env

from typing import Tuple, Dict, List, Any, Union
import numpy as np
import numpy.typing as npt
import time
import math
import csle_common.constants.constants as constants
from csle_common.dao.simulation_config.base_env import BaseEnv
from csle_common.dao.simulation_config.simulation_trace import SimulationTrace
from gym_csle_apt_game.util.apt_game_util import AptGameUtil
from gym_csle_apt_game.dao.apt_game_config import AptGameConfig
from gym_csle_apt_game.dao.apt_game_state import AptGameState
import gym_csle_apt_game.constants.constants as env_constants


[docs]class AptGameEnv(BaseEnv): """ OpenAI Gym Env for the csle-apt-game """ def __init__(self, config: AptGameConfig): """ Initializes the environment :param config: the environment configuration """ self.config = config # Initialize environment state self.state = AptGameState(b1=self.config.b1) # Setup spaces self.attacker_observation_space = self.config.attacker_observation_space() self.defender_observation_space = self.config.defender_observation_space() self.attacker_action_space = self.config.attacker_action_space() self.defender_action_space = self.config.defender_action_space() self.action_space = self.defender_action_space self.observation_space = self.defender_observation_space # Setup traces self.traces: List[SimulationTrace] = [] self.trace = SimulationTrace(simulation_env=self.config.env_name) # Reset self.reset() super().__init__()
[docs] def step(self, action_profile: Tuple[int, Tuple[npt.NDArray[Any], int]]) \ -> Tuple[ Tuple[npt.NDArray[Any], Tuple[npt.NDArray[Any], int]], Tuple[int, int], bool, bool, Dict[str, Any]]: """ Takes a step in the environment by executing the given action :param action_profile: the actions to take (both players actions :return: (obs, reward, terminated, truncated, info) """ # Setup initial values a1, a2_profile = action_profile pi2, a2 = a2_profile assert pi2.shape[0] == len(self.config.S) assert pi2.shape[1] == len(self.config.A1) done = False info: Dict[str, Any] = {} # Compute c, s', b',o' c = self.config.C[a1][self.state.s] self.state.s = AptGameUtil.sample_next_state(a1=a1, a2=a2, T=self.config.T, S=self.config.S, s=self.state.s) o = AptGameUtil.sample_next_observation(Z=self.config.Z, O=self.config.O, s_prime=self.state.s) o_idx = list(self.config.O).index(o) self.state.b = AptGameUtil.next_belief(o=o_idx, a1=a1, b=self.state.b, pi2=pi2, config=self.config, a2=a2, s=self.state.s) # Update time-step self.state.t += 1 # Populate info dict info[env_constants.ENV_METRICS.STATE] = self.state.s info[env_constants.ENV_METRICS.DEFENDER_ACTION] = a1 info[env_constants.ENV_METRICS.ATTACKER_ACTION] = a2 info[env_constants.ENV_METRICS.OBSERVATION] = o info[env_constants.ENV_METRICS.TIME_STEP] = self.state.t # Get observations attacker_obs = self.state.attacker_observation() defender_obs = self.state.defender_observation() # Log trace self.trace.defender_rewards.append(c) self.trace.attacker_rewards.append(-c) self.trace.attacker_actions.append(a2) self.trace.defender_actions.append(a1) self.trace.infos.append(info) self.trace.states.append(self.state.s) self.trace.beliefs.append(self.state.b) self.trace.infrastructure_metrics.append(o) if not done: self.trace.attacker_observations.append(attacker_obs) self.trace.defender_observations.append(defender_obs) # Populate info info = self._info(info) return (defender_obs, attacker_obs), (c, -c), done, done, info
[docs] def mean(self, prob_vector): """ Utility function for getting the mean of a vector :param prob_vector: the vector to take the mean of :return: the mean """ m = 0 for i in range(len(prob_vector)): m += prob_vector[i] * i return m
def _info(self, info: Dict[str, Any]) -> Dict[str, Any]: """ Adds the cumulative reward and episode length to the info dict :param info: the info dict to update :return: the updated info dict """ R = 0 for i in range(len(self.trace.defender_rewards)): R += self.trace.defender_rewards[i] * math.pow(self.config.gamma, i) info[env_constants.ENV_METRICS.RETURN] = sum(self.trace.defender_rewards) info[env_constants.ENV_METRICS.TIME_HORIZON] = len(self.trace.defender_actions) return info
[docs] def reset(self, seed: Union[None, int] = None, soft: bool = False, options: Union[Dict[str, Any], None] = None) \ -> Tuple[Tuple[npt.NDArray[Any], Tuple[npt.NDArray[Any], int]], Dict[str, Any]]: """ Resets the environment state, this should be called whenever step() returns <done> :param seed: the random seed :param soft: boolean flag indicating whether it is a soft reset or not :param options: optional configuration parameters :return: initial observation and info """ super().reset(seed=seed) self.state.reset() if len(self.trace.attacker_rewards) > 0: self.traces.append(self.trace) self.trace = SimulationTrace(simulation_env=self.config.env_name) attacker_obs = self.state.attacker_observation() defender_obs = self.state.defender_observation() self.trace.attacker_observations.append(attacker_obs) self.trace.defender_observations.append(defender_obs) info: Dict[str, Any] = {} return (defender_obs, attacker_obs), info
[docs] def render(self, mode: str = 'human'): """ Renders the environment. Supported rendering modes: (1) human; and (2) rgb_array :param mode: the rendering mode :return: True (if human mode) otherwise an rgb array """ raise NotImplementedError("Rendering is not implemented for this environment")
[docs] def get_traces(self) -> List[SimulationTrace]: """ :return: the list of simulation traces """ return self.traces
[docs] def reset_traces(self) -> None: """ Resets the list of traces :return: None """ self.traces = []
def __checkpoint_traces(self) -> None: """ Checkpoints agent traces :return: None """ ts = time.time() SimulationTrace.save_traces(traces_save_dir=constants.LOGGING.DEFAULT_LOG_DIR, traces=self.traces, traces_file=f"taus{ts}.json")
[docs] def set_model(self, model) -> None: """ Sets the model. Useful when using RL frameworks where the stage policy is not easy to extract :param model: the model :return: None """ self.model = model
[docs] def set_state(self, state: Union[AptGameState, int]) -> None: """ Sets the state. Allows to simulate samples from specific states :param state: the state :return: None """ if isinstance(state, AptGameState): self.state = state elif type(state) is int or type(state) is np.int64: self.state.s = state else: raise ValueError(f"state: {state} not valid")
[docs] def manual_play(self) -> None: """ An interactive loop to test the environment manually :return: None """ done = False while True: raw_input = input("> ") raw_input = raw_input.strip() if raw_input == "help": print("Enter an action id to execute the action, " "press R to reset," "press S to print the state, press A to print the actions, " "press D to check if done" "press H to print the history of actions") elif raw_input == "A": print(f"Attacker space: {self.action_space}") elif raw_input == "S": print(self.state) elif raw_input == "D": print(done) elif raw_input == "H": print(self.trace) elif raw_input == "R": print("Resetting the state") self.reset() else: action_profile = raw_input parts = action_profile.split(",") a1 = int(parts[0]) a2 = int(parts[1]) stage_policy = [] for s in self.config.S: if s != 2: dist = [0.0, 0.0] dist[a2] = 1.0 stage_policy.append(dist) else: stage_policy.append([0.5, 0.5]) pi2 = np.array(stage_policy) _, _, done, _, _ = self.step(action_profile=(a1, (pi2, a2)))