Source code for csle_agents.agents.cma_es.cma_es_agent

from typing import Union, List, Dict, Optional, Any
import math
import time
import gymnasium as gym
import cma
import os
import numpy as np
import numpy.typing as npt
import gym_csle_stopping_game.constants.constants as env_constants
from csle_common.dao.emulation_config.emulation_env_config import EmulationEnvConfig
from csle_common.dao.simulation_config.simulation_env_config import SimulationEnvConfig
from csle_common.dao.training.experiment_config import ExperimentConfig
from csle_common.dao.training.experiment_execution import ExperimentExecution
from csle_common.dao.training.experiment_result import ExperimentResult
from csle_common.dao.training.agent_type import AgentType
from csle_common.dao.training.player_type import PlayerType
from csle_common.util.experiment_util import ExperimentUtil
from csle_common.logging.log import Logger
from csle_common.dao.training.multi_threshold_stopping_policy import MultiThresholdStoppingPolicy
from csle_common.dao.training.linear_threshold_stopping_policy import LinearThresholdStoppingPolicy
from csle_common.metastore.metastore_facade import MetastoreFacade
from csle_common.dao.jobs.training_job_config import TrainingJobConfig
from csle_common.util.general_util import GeneralUtil
from csle_common.dao.training.policy_type import PolicyType
from csle_common.dao.simulation_config.base_env import BaseEnv
from csle_agents.common.objective_type import ObjectiveType
from csle_agents.agents.base.base_agent import BaseAgent
import csle_agents.constants.constants as agents_constants


[docs]class CMAESAgent(BaseAgent): """ Covariance Matrix Adaptation Evolution Strategy (CMA-ES) Agent """ def __init__(self, simulation_env_config: SimulationEnvConfig, emulation_env_config: Union[None, EmulationEnvConfig], experiment_config: ExperimentConfig, env: Optional[BaseEnv] = None, training_job: Optional[TrainingJobConfig] = None, save_to_metastore: bool = True): """ Initializes the CMA-ES Agent :param simulation_env_config: the simulation env config :param emulation_env_config: the emulation env config :param experiment_config: the experiment config :param env: (optional) the gym environment to use for simulation :param training_job: (optional) a training job configuration :param save_to_metastore: boolean flag that can be set to avoid saving results and progress to the metastore """ super().__init__(simulation_env_config=simulation_env_config, emulation_env_config=emulation_env_config, experiment_config=experiment_config) assert experiment_config.agent_type == AgentType.CMA_ES self.env = env self.training_job = training_job self.save_to_metastore = save_to_metastore
[docs] def train(self) -> ExperimentExecution: """ Performs the policy training for the given random seeds using CMA-ES :return: the training metrics and the trained policies """ pid = os.getpid() # Initialize metrics exp_result = ExperimentResult() exp_result.plot_metrics.append(agents_constants.COMMON.AVERAGE_RETURN) exp_result.plot_metrics.append(agents_constants.COMMON.RUNNING_AVERAGE_RETURN) exp_result.plot_metrics.append(env_constants.ENV_METRICS.INTRUSION_LENGTH) exp_result.plot_metrics.append(agents_constants.COMMON.RUNNING_AVERAGE_INTRUSION_LENGTH) exp_result.plot_metrics.append(env_constants.ENV_METRICS.INTRUSION_START) exp_result.plot_metrics.append(agents_constants.COMMON.RUNNING_AVERAGE_INTRUSION_START) exp_result.plot_metrics.append(env_constants.ENV_METRICS.TIME_HORIZON) exp_result.plot_metrics.append(agents_constants.COMMON.RUNNING_AVERAGE_TIME_HORIZON) exp_result.plot_metrics.append(env_constants.ENV_METRICS.AVERAGE_UPPER_BOUND_RETURN) exp_result.plot_metrics.append(env_constants.ENV_METRICS.AVERAGE_DEFENDER_BASELINE_STOP_ON_FIRST_ALERT_RETURN) exp_result.plot_metrics.append(agents_constants.COMMON.RUNTIME) for l in range(1, self.experiment_config.hparams[agents_constants.CMA_ES_OPTIMIZATION.L].value + 1): exp_result.plot_metrics.append(f"{env_constants.ENV_METRICS.STOP}_{l}") exp_result.plot_metrics.append(f"{env_constants.ENV_METRICS.STOP}_running_average_{l}") descr = f"Training of policies with the CMA-ES algorithm using " \ f"simulation:{self.simulation_env_config.name}" for seed in self.experiment_config.random_seeds: exp_result.all_metrics[seed] = {} exp_result.all_metrics[seed][agents_constants.CMA_ES_OPTIMIZATION.THETAS] = [] exp_result.all_metrics[seed][agents_constants.COMMON.AVERAGE_RETURN] = [] exp_result.all_metrics[seed][agents_constants.COMMON.RUNNING_AVERAGE_RETURN] = [] exp_result.all_metrics[seed][agents_constants.CMA_ES_OPTIMIZATION.THRESHOLDS] = [] if self.experiment_config.player_type == PlayerType.DEFENDER: for l in range(1, self.experiment_config.hparams[agents_constants.CMA_ES_OPTIMIZATION.L].value + 1): exp_result.all_metrics[seed][ f"{agents_constants.CMA_ES_OPTIMIZATION.STOP_DISTRIBUTION_DEFENDER}_l={l}"] = [] else: for s in self.simulation_env_config.state_space_config.states: for l in range(1, self.experiment_config.hparams[agents_constants.CMA_ES_OPTIMIZATION.L].value + 1): exp_result.all_metrics[seed][agents_constants.CMA_ES_OPTIMIZATION.STOP_DISTRIBUTION_ATTACKER + f"_l={l}_s={s.id}"] = [] exp_result.all_metrics[seed][agents_constants.COMMON.RUNNING_AVERAGE_INTRUSION_START] = [] exp_result.all_metrics[seed][agents_constants.COMMON.RUNNING_AVERAGE_TIME_HORIZON] = [] exp_result.all_metrics[seed][agents_constants.COMMON.RUNNING_AVERAGE_INTRUSION_LENGTH] = [] exp_result.all_metrics[seed][env_constants.ENV_METRICS.INTRUSION_START] = [] exp_result.all_metrics[seed][env_constants.ENV_METRICS.INTRUSION_LENGTH] = [] exp_result.all_metrics[seed][env_constants.ENV_METRICS.TIME_HORIZON] = [] exp_result.all_metrics[seed][env_constants.ENV_METRICS.AVERAGE_UPPER_BOUND_RETURN] = [] exp_result.all_metrics[seed][ env_constants.ENV_METRICS.AVERAGE_DEFENDER_BASELINE_STOP_ON_FIRST_ALERT_RETURN] = [] for l in range(1, self.experiment_config.hparams[agents_constants.CMA_ES_OPTIMIZATION.L].value + 1): exp_result.all_metrics[seed][f"{env_constants.ENV_METRICS.STOP}_{l}"] = [] exp_result.all_metrics[seed][f"{env_constants.ENV_METRICS.STOP}_running_average_{l}"] = [] exp_result.all_metrics[seed][agents_constants.COMMON.RUNTIME] = [] # Initialize training job if self.training_job is None: emulation_name = "" if self.emulation_env_config is not None: emulation_name = self.emulation_env_config.name self.training_job = TrainingJobConfig( simulation_env_name=self.simulation_env_config.name, experiment_config=self.experiment_config, progress_percentage=0, pid=pid, experiment_result=exp_result, emulation_env_name=emulation_name, simulation_traces=[], num_cached_traces=agents_constants.COMMON.NUM_CACHED_SIMULATION_TRACES, log_file_path=Logger.__call__().get_log_file_path(), descr=descr, physical_host_ip=GeneralUtil.get_host_ip()) if self.save_to_metastore: training_job_id = MetastoreFacade.save_training_job(training_job=self.training_job) self.training_job.id = training_job_id else: self.training_job.pid = pid self.training_job.progress_percentage = 0 self.training_job.experiment_result = exp_result if self.save_to_metastore: MetastoreFacade.update_training_job(training_job=self.training_job, id=self.training_job.id) # Initialize execution result ts = time.time() emulation_name = "" if self.emulation_env_config is not None: emulation_name = self.emulation_env_config.name simulation_name = self.simulation_env_config.name self.exp_execution = ExperimentExecution( result=exp_result, config=self.experiment_config, timestamp=ts, emulation_name=emulation_name, simulation_name=simulation_name, descr=descr, log_file_path=self.training_job.log_file_path) if self.save_to_metastore: exp_execution_id = MetastoreFacade.save_experiment_execution(self.exp_execution) self.exp_execution.id = exp_execution_id config = self.simulation_env_config.simulation_env_input_config if self.env is None: self.env = gym.make(self.simulation_env_config.gym_env_name, config=config) for seed in self.experiment_config.random_seeds: ExperimentUtil.set_seed(seed) exp_result = self.cma_es(exp_result=exp_result, seed=seed, training_job=self.training_job, random_seeds=self.experiment_config.random_seeds) # Save latest trace if self.save_to_metastore: MetastoreFacade.save_simulation_trace(self.env.get_traces()[-1]) self.env.reset_traces() # Calculate average and std metrics exp_result.avg_metrics = {} exp_result.std_metrics = {} for metric in exp_result.all_metrics[self.experiment_config.random_seeds[0]].keys(): value_vectors = [] for seed in self.experiment_config.random_seeds: value_vectors.append(exp_result.all_metrics[seed][metric]) avg_metrics = [] std_metrics = [] for i in range(len(value_vectors[0])): if type(value_vectors[0][0]) is int or type(value_vectors[0][0]) is float \ or type(value_vectors[0][0]) is np.int64 or type(value_vectors[0][0]) is np.float64: seed_values = [] for seed_idx in range(len(self.experiment_config.random_seeds)): if i < len(value_vectors[seed_idx]): seed_values.append(value_vectors[seed_idx][i]) avg = ExperimentUtil.mean_confidence_interval( data=seed_values, confidence=self.experiment_config.hparams[agents_constants.COMMON.CONFIDENCE_INTERVAL].value)[0] if not math.isnan(avg): avg_metrics.append(avg) ci = ExperimentUtil.mean_confidence_interval( data=seed_values, confidence=self.experiment_config.hparams[agents_constants.COMMON.CONFIDENCE_INTERVAL].value)[1] if not math.isnan(ci): std_metrics.append(ci) else: std_metrics.append(-1) else: avg_metrics.append(-1) std_metrics.append(-1) exp_result.avg_metrics[metric] = avg_metrics exp_result.std_metrics[metric] = std_metrics traces = self.env.get_traces() if len(traces) > 0 and self.save_to_metastore: MetastoreFacade.save_simulation_trace(traces[-1]) ts = time.time() self.exp_execution.timestamp = ts self.exp_execution.result = exp_result if self.save_to_metastore: MetastoreFacade.update_experiment_execution(experiment_execution=self.exp_execution, id=self.exp_execution.id) return self.exp_execution
[docs] def hparam_names(self) -> List[str]: """ :return: a list with the hyperparameter names """ return [agents_constants.CMA_ES_OPTIMIZATION.N, agents_constants.CMA_ES_OPTIMIZATION.L, agents_constants.CMA_ES_OPTIMIZATION.THETA1, agents_constants.CMA_ES_OPTIMIZATION.UTILITY_FUNCTION, agents_constants.CMA_ES_OPTIMIZATION.UCB_KAPPA, agents_constants.CMA_ES_OPTIMIZATION.UCB_XI, agents_constants.CMA_ES_OPTIMIZATION.PARAMETER_BOUNDS, agents_constants.COMMON.EVAL_BATCH_SIZE, agents_constants.COMMON.CONFIDENCE_INTERVAL, agents_constants.COMMON.RUNNING_AVERAGE]
[docs] def cma_es(self, exp_result: ExperimentResult, seed: int, training_job: TrainingJobConfig, random_seeds: List[int]) -> ExperimentResult: """ Runs the CMA-ES algorithm :param exp_result: the experiment result object to store the result :param seed: the seed :param training_job: the training job config :param random_seeds: list of seeds :return: the updated experiment result and the trained policy """ start: float = time.time() L = self.experiment_config.hparams[agents_constants.CMA_ES_OPTIMIZATION.L].value objective_type_param = ( self.experiment_config.hparams[agents_constants.CMA_ES_OPTIMIZATION.OBJECTIVE_TYPE].value) if not isinstance(objective_type_param, ObjectiveType): raise ValueError("Invalid objective type") else: objective_type: ObjectiveType = objective_type_param if agents_constants.CMA_ES_OPTIMIZATION.THETA1 in self.experiment_config.hparams: theta = self.experiment_config.hparams[agents_constants.CMA_ES_OPTIMIZATION.THETA1].value else: if self.experiment_config.player_type == PlayerType.DEFENDER: theta = CMAESAgent.initial_theta(L=L) else: theta = CMAESAgent.initial_theta(L=2 * L) # Initial eval policy = self.get_policy(theta=list(theta), L=L) if self.env is not None: if self.experiment_config.player_type == PlayerType.DEFENDER: self.env.static_defender_strategy = policy if self.experiment_config.player_type == PlayerType.ATTACKER: self.env.static_attacker_strategy = policy J = self.J(theta, objetive_type=objective_type) policy.avg_R = J exp_result.all_metrics[seed][agents_constants.COMMON.AVERAGE_RETURN].append(J) exp_result.all_metrics[seed][agents_constants.COMMON.RUNNING_AVERAGE_RETURN].append(J) exp_result.all_metrics[seed][agents_constants.CMA_ES_OPTIMIZATION.THETAS].append( CMAESAgent.round_vec(theta)) time_elapsed_minutes = round((time.time() - start) / 60, 3) exp_result.all_metrics[seed][agents_constants.COMMON.RUNTIME].append(time_elapsed_minutes) # Hyperparameters N = self.experiment_config.hparams[agents_constants.CMA_ES_OPTIMIZATION.N].value parameter_bounds = self.experiment_config.hparams[agents_constants.BAYESIAN_OPTIMIZATION.PARAMETER_BOUNDS].value es = cma.CMAEvolutionStrategy(theta, L / N, {'verb_log': False, 'verbose': False, 'verb_disp': False, 'verb_time': False, 'bounds': parameter_bounds}) for i in range(N): if es.stop(): break solutions = es.ask() values = list(map(lambda x: self.J(x, objetive_type=objective_type), solutions)) es.tell(solutions, values) J = es.result.fbest theta = es.result.xbest if objective_type == ObjectiveType.MAX: J = -J policy = self.get_policy(theta=theta, L=L) policy.avg_R = J running_avg_J = ExperimentUtil.running_average( exp_result.all_metrics[seed][agents_constants.COMMON.AVERAGE_RETURN], self.experiment_config.hparams[agents_constants.COMMON.RUNNING_AVERAGE].value) exp_result.all_metrics[seed][agents_constants.COMMON.AVERAGE_RETURN].append(J) exp_result.all_metrics[seed][agents_constants.COMMON.RUNNING_AVERAGE_RETURN].append(running_avg_J) avg_metrics = self.eval_theta(theta) # Log runtime time_elapsed_minutes = round((time.time() - start) / 60, 3) exp_result.all_metrics[seed][agents_constants.COMMON.RUNTIME].append(time_elapsed_minutes) # Log thetas exp_result.all_metrics[seed][agents_constants.CMA_ES_OPTIMIZATION.THETAS].append( CMAESAgent.round_vec(theta)) if self.experiment_config.hparams[agents_constants.CMA_ES_OPTIMIZATION.POLICY_TYPE] \ == PolicyType.MULTI_THRESHOLD: # Log thresholds exp_result.all_metrics[seed][agents_constants.CMA_ES_OPTIMIZATION.THRESHOLDS].append( CMAESAgent.round_vec(policy.thresholds())) # Log stop distribution for k, v in policy.stop_distributions().items(): exp_result.all_metrics[seed][k].append(v) # Log intrusion lengths if env_constants.ENV_METRICS.INTRUSION_LENGTH in exp_result.all_metrics: exp_result.all_metrics[seed][env_constants.ENV_METRICS.INTRUSION_LENGTH].append( round(avg_metrics[env_constants.ENV_METRICS.INTRUSION_LENGTH], 3)) if agents_constants.COMMON.RUNNING_AVERAGE_INTRUSION_LENGTH in exp_result.all_metrics: exp_result.all_metrics[seed][agents_constants.COMMON.RUNNING_AVERAGE_INTRUSION_LENGTH].append( ExperimentUtil.running_average( exp_result.all_metrics[seed][env_constants.ENV_METRICS.INTRUSION_LENGTH], self.experiment_config.hparams[agents_constants.COMMON.RUNNING_AVERAGE].value)) # Log stopping times if env_constants.ENV_METRICS.INTRUSION_START in exp_result.all_metrics: exp_result.all_metrics[seed][env_constants.ENV_METRICS.INTRUSION_START].append( round(avg_metrics[env_constants.ENV_METRICS.INTRUSION_START], 3)) if agents_constants.COMMON.RUNNING_AVERAGE_INTRUSION_START in exp_result.all_metrics: exp_result.all_metrics[seed][agents_constants.COMMON.RUNNING_AVERAGE_INTRUSION_START].append( ExperimentUtil.running_average( exp_result.all_metrics[seed][env_constants.ENV_METRICS.INTRUSION_START], self.experiment_config.hparams[agents_constants.COMMON.RUNNING_AVERAGE].value)) exp_result.all_metrics[seed][env_constants.ENV_METRICS.TIME_HORIZON].append( round(avg_metrics[env_constants.ENV_METRICS.TIME_HORIZON], 3)) exp_result.all_metrics[seed][agents_constants.COMMON.RUNNING_AVERAGE_TIME_HORIZON].append( ExperimentUtil.running_average( exp_result.all_metrics[seed][env_constants.ENV_METRICS.TIME_HORIZON], self.experiment_config.hparams[agents_constants.COMMON.RUNNING_AVERAGE].value)) for l in range(1, self.experiment_config.hparams[agents_constants.CMA_ES_OPTIMIZATION.L].value + 1): if env_constants.ENV_METRICS.STOP + f"_{l}" in avg_metrics: exp_result.plot_metrics.append(env_constants.ENV_METRICS.STOP + f"_{l}") exp_result.all_metrics[seed][env_constants.ENV_METRICS.STOP + f"_{l}"].append( round(avg_metrics[env_constants.ENV_METRICS.STOP + f"_{l}"], 3)) exp_result.all_metrics[seed][env_constants.ENV_METRICS.STOP + f"_running_average_{l}"].append( ExperimentUtil.running_average( exp_result.all_metrics[seed][env_constants.ENV_METRICS.STOP + f"_{l}"], self.experiment_config.hparams[agents_constants.COMMON.RUNNING_AVERAGE].value)) # Log baseline returns exp_result.all_metrics[seed][env_constants.ENV_METRICS.AVERAGE_UPPER_BOUND_RETURN].append( round(avg_metrics[env_constants.ENV_METRICS.AVERAGE_UPPER_BOUND_RETURN], 3)) if env_constants.ENV_METRICS.AVERAGE_DEFENDER_BASELINE_STOP_ON_FIRST_ALERT_RETURN in avg_metrics: exp_result.all_metrics[seed][ env_constants.ENV_METRICS.AVERAGE_DEFENDER_BASELINE_STOP_ON_FIRST_ALERT_RETURN].append( round(avg_metrics[env_constants.ENV_METRICS.AVERAGE_DEFENDER_BASELINE_STOP_ON_FIRST_ALERT_RETURN], 3)) if i % self.experiment_config.log_every == 0 and i > 0: # Update training job total_iterations = len(random_seeds) * N iterations_done = (random_seeds.index(seed)) * N + i progress = round(iterations_done / total_iterations, 2) training_job.progress_percentage = progress training_job.experiment_result = exp_result if self.env is not None and len(self.env.get_traces()) > 0: training_job.simulation_traces.append(self.env.get_traces()[-1]) if len(training_job.simulation_traces) > training_job.num_cached_traces: training_job.simulation_traces = training_job.simulation_traces[1:] if self.save_to_metastore: MetastoreFacade.update_training_job(training_job=training_job, id=training_job.id) # Update execution ts = time.time() self.exp_execution.timestamp = ts self.exp_execution.result = exp_result if self.save_to_metastore: MetastoreFacade.update_experiment_execution(experiment_execution=self.exp_execution, id=self.exp_execution.id) Logger.__call__().get_logger().info( f"[CMA-ES] i: {i}, J:{J}, " f"J_avg_{self.experiment_config.hparams[agents_constants.COMMON.RUNNING_AVERAGE].value}:" f"{running_avg_J}, " f"opt_J:{exp_result.all_metrics[seed][env_constants.ENV_METRICS.AVERAGE_UPPER_BOUND_RETURN][-1]}, " f"theta:{policy.theta}, progress: {round(progress * 100, 2)}%, " f"runtime: {time_elapsed_minutes} min") policy = self.get_policy(theta=list(theta), L=L) exp_result.policies[seed] = policy # Save policy if self.save_to_metastore: MetastoreFacade.save_multi_threshold_stopping_policy(multi_threshold_stopping_policy=policy) return exp_result
[docs] def J(self, theta: List[float], objetive_type: ObjectiveType) -> float: """ The objective function to minimize :param theta: the theta vector to evaluate :param objetive_type: the objective type :return: the objective function value """ if objetive_type == ObjectiveType.MIN: return float(round(self.eval_theta(theta)[env_constants.ENV_METRICS.RETURN], 3)) else: return -float(round(self.eval_theta(theta)[env_constants.ENV_METRICS.RETURN], 3))
[docs] def eval_theta(self, theta) -> Dict[str, Any]: """ Evaluates a given threshold policy by running monte-carlo simulations :param policy: the policy to evaluate :return: the average metrics of the evaluation """ max_steps = self.experiment_config.hparams[agents_constants.COMMON.MAX_ENV_STEPS].value L = self.experiment_config.hparams[agents_constants.CMA_ES_OPTIMIZATION.L].value if self.experiment_config.hparams[agents_constants.CMA_ES_OPTIMIZATION.POLICY_TYPE].value \ == PolicyType.MULTI_THRESHOLD.value: policy = MultiThresholdStoppingPolicy( theta=list(theta), simulation_name=self.simulation_env_config.name, states=self.simulation_env_config.state_space_config.states, player_type=self.experiment_config.player_type, L=L, actions=self.simulation_env_config.joint_action_space_config.action_spaces[ self.experiment_config.player_idx].actions, experiment_config=self.experiment_config, avg_R=-1, agent_type=AgentType.CMA_ES) else: policy = LinearThresholdStoppingPolicy( theta=list(theta), simulation_name=self.simulation_env_config.name, states=self.simulation_env_config.state_space_config.states, player_type=self.experiment_config.player_type, L=L, actions=self.simulation_env_config.joint_action_space_config.action_spaces[ self.experiment_config.player_idx].actions, experiment_config=self.experiment_config, avg_R=-1, agent_type=AgentType.CMA_ES) if self.env is None: raise ValueError("An environment need to specified to run the evaluation") eval_batch_size = self.experiment_config.hparams[agents_constants.COMMON.EVAL_BATCH_SIZE].value metrics: Dict[str, Any] = {} for j in range(eval_batch_size): done = False o, _ = self.env.reset() l = int(o[0]) b1 = o[1] t = 1 r = 0 a = 0 info: Dict[str, Any] = {} while not done and t <= max_steps: Logger.__call__().get_logger().debug(f"t:{t}, a: {a}, b1:{b1}, r:{r}, l:{l}, info:{info}") if self.experiment_config.player_type == PlayerType.ATTACKER: policy.opponent_strategy = self.env.static_defender_strategy a = policy.action(o=o) else: a = policy.action(o=o) o, r, done, _, info = self.env.step(a) l = int(o[0]) b1 = o[1] t += 1 metrics = CMAESAgent.update_metrics(metrics=metrics, info=info) avg_metrics = CMAESAgent.compute_avg_metrics(metrics=metrics) return avg_metrics
[docs] @staticmethod def update_metrics(metrics: Dict[str, List[Union[float, int]]], info: Dict[str, Union[float, int]]) \ -> Dict[str, List[Union[float, int]]]: """ Update a dict with aggregated metrics using new information from the environment :param metrics: the dict with the aggregated metrics :param info: the new information :return: the updated dict """ for k, v in info.items(): if k in metrics: metrics[k].append(round(v, 3)) else: metrics[k] = [v] return metrics
[docs] @staticmethod def compute_avg_metrics(metrics: Dict[str, List[Union[float, int]]]) -> Dict[str, Union[float, int]]: """ Computes the average metrics of a dict with aggregated metrics :param metrics: the dict with the aggregated metrics :return: the average metrics """ avg_metrics = {} for k, v in metrics.items(): avg = round(sum(v) / len(v), 2) avg_metrics[k] = avg return avg_metrics
[docs] @staticmethod def initial_theta(L: int) -> npt.NDArray[Any]: """ Initializes theta randomly :param L: the dimension of theta :return: the initialized theta vector """ theta_1 = [] for k in range(L): theta_1.append(np.random.uniform(-3, 3)) return np.array(theta_1)
[docs] @staticmethod def round_vec(vec) -> List[float]: """ Rounds a vector to 3 decimals :param vec: the vector to round :return: the rounded vector """ return list(map(lambda x: round(x, 3), vec))
[docs] def get_policy(self, theta: List[float], L: int) \ -> Union[MultiThresholdStoppingPolicy, LinearThresholdStoppingPolicy]: """ Utility method for getting the policy of a given parameter vector :param theta: the parameter vector :param L: the number of parameters :return: the policy """ if self.experiment_config.hparams[agents_constants.CMA_ES_OPTIMIZATION.POLICY_TYPE].value \ == PolicyType.MULTI_THRESHOLD.value: policy = MultiThresholdStoppingPolicy( theta=list(theta), simulation_name=self.simulation_env_config.name, states=self.simulation_env_config.state_space_config.states, player_type=self.experiment_config.player_type, L=L, actions=self.simulation_env_config.joint_action_space_config.action_spaces[ self.experiment_config.player_idx].actions, experiment_config=self.experiment_config, avg_R=-1, agent_type=AgentType.CMA_ES) else: policy = LinearThresholdStoppingPolicy( theta=list(theta), simulation_name=self.simulation_env_config.name, states=self.simulation_env_config.state_space_config.states, player_type=self.experiment_config.player_type, L=L, actions=self.simulation_env_config.joint_action_space_config.action_spaces[ self.experiment_config.player_idx].actions, experiment_config=self.experiment_config, avg_R=-1, agent_type=AgentType.CMA_ES) return policy