csle_agents.agents.bayesian_optimization_emukit package

Subpackages

Submodules

csle_agents.agents.bayesian_optimization_emukit.bayes_opt_emukit_agent module

class csle_agents.agents.bayesian_optimization_emukit.bayes_opt_emukit_agent.BayesOptEmukitAgent(simulation_env_config: SimulationEnvConfig, emulation_env_config: Union[None, EmulationEnvConfig], experiment_config: ExperimentConfig, env: Optional[BaseEnv] = None, training_job: Optional[TrainingJobConfig] = None, save_to_metastore: bool = True)[source]

Bases: BaseAgent

Bayesian Optimization Agent based on the EmuKit framework

bayesian_optimization(exp_result: ExperimentResult, seed: int, training_job: TrainingJobConfig, random_seeds: List[int]) ExperimentResult[source]

Runs the Bayesian Optimization algorithm

Parameters
  • exp_result – the experiment result object to store the result

  • seed – the seed

  • training_job – the training job config

  • random_seeds – list of seeds

Returns

the updated experiment result and the trained policy

static compute_avg_metrics(metrics: Dict[str, List[Union[float, int]]]) Dict[str, Union[float, int]][source]

Computes the average metrics of a dict with aggregated metrics

Parameters

metrics – the dict with the aggregated metrics

Returns

the average metrics

eval_theta(policy: Union[MultiThresholdStoppingPolicy, LinearThresholdStoppingPolicy], max_steps: int = 200) Dict[str, Any][source]

Evaluates a given threshold policy by running monte-carlo simulations

Parameters

policy – the policy to evaluate

Returns

the average metrics of the evaluation

get_policy(theta: List[float], L: int) Union[MultiThresholdStoppingPolicy, LinearThresholdStoppingPolicy][source]

Utility method for getting the policy of a given parameter vector

Parameters
  • theta – the parameter vector

  • L – the number of parameters

Returns

the policy

static get_theta_vector_from_param_dict(param_dict: Dict[str, float]) List[float][source]

Extracts the theta vector from the parameter dict

Parameters

param_dict – the parameter dict

Returns

the theta vector

hparam_names() List[str][source]
Returns

a list with the hyperparameter names

static initial_theta(L: int) ndarray[Any, dtype[Any]][source]

Initializes theta randomly

Parameters

L – the dimension of theta

Returns

the initialized theta vector

static round_vec(vec) List[float][source]

Rounds a vector to 3 decimals

Parameters

vec – the vector to round

Returns

the rounded vector

train() ExperimentExecution[source]

Performs the policy training for the given random seeds using Bayesian Optimization

Returns

the training metrics and the trained policies

static update_metrics(metrics: Dict[str, List[Union[float, int]]], info: Dict[str, Union[float, int]]) Dict[str, List[Union[float, int]]][source]

Update a dict with aggregated metrics using new information from the environment

Parameters
  • metrics – the dict with the aggregated metrics

  • info – the new information

Returns

the updated dict

Module contents