csle_agents.agents.dqn_clean package

Submodules

csle_agents.agents.dqn_clean.dqn_clean_agent module

MIT License

Copyright (c) 2019 CleanRL developers https://github.com/vwxyzjn/cleanrl

class csle_agents.agents.dqn_clean.dqn_clean_agent.DQNCleanAgent(simulation_env_config: SimulationEnvConfig, emulation_env_config: Optional[EmulationEnvConfig], experiment_config: ExperimentConfig, training_job: Optional[TrainingJobConfig] = None, save_to_metastore: bool = True)[source]

Bases: BaseAgent

A DQN agent using the implementation from OpenAI baselines

hparam_names() List[str][source]

Gets the hyperparameters

Returns

a list with the hyperparameter names

linear_schedule(duration: int, t: int) float[source]

Linear exploration rate decay sechdule

Parameters
  • duration – the duration of training

  • t – the current time

Returns

the new exploration rate

make_env() Callable[[], RecordEpisodeStatistics[Any, Any]][source]

Helper function for creating an environment in training of the agent

Returns

environment creating function

run_dqn(exp_result: ExperimentResult, seed: int) Tuple[ExperimentResult, BaseEnv, QNetwork][source]

Runs DQN with given seed

Parameters
  • exp_result – the object to save the experiment results

  • seed – the random seed

Retur

the updated experiment results, the environment and the trained model

train() ExperimentExecution[source]

Implements the training logic of the DQN algorithm

Returns

the experiment result

Module contents