csle_agents.agents.ppg_clean package
Submodules
csle_agents.agents.ppg_clean.ppg_clean_agent module
MIT License
Copyright (c) 2019 CleanRL developers https://github.com/vwxyzjn/cleanrl
- class csle_agents.agents.ppg_clean.ppg_clean_agent.PPGCleanAgent(simulation_env_config: csle_common.dao.simulation_config.simulation_env_config.SimulationEnvConfig, emulation_env_config: Union[None, csle_common.dao.emulation_config.emulation_env_config.EmulationEnvConfig], experiment_config: csle_common.dao.training.experiment_config.ExperimentConfig, training_job: Optional[csle_common.dao.jobs.training_job_config.TrainingJobConfig] = None, save_to_metastore: bool = True)[source]
Bases:
csle_agents.agents.base.base_agent.BaseAgent
A Phasic Policy Gradient agent using the implementation from CleanRL
- make_env() Callable[[], gymnasium.wrappers.record_episode_statistics.RecordEpisodeStatistics] [source]
Helper function for creating the environment to use for training
- Returns
a function that creates the environment
- run_ppg(exp_result: csle_common.dao.training.experiment_result.ExperimentResult, seed: int) Tuple[csle_common.dao.training.experiment_result.ExperimentResult, csle_common.dao.simulation_config.base_env.BaseEnv, csle_common.models.ppo_network.PPONetwork] [source]
Runs PPG with a given seed
- Parameters
exp_result – the object to save the experiment results
seed – the random seed
- Returns
the updated experiment results, the environment, and the trained model