csle_agents.agents.lp_nf package
Submodules
csle_agents.agents.lp_nf.linear_programming_normal_form_game_agent module
- class csle_agents.agents.lp_nf.linear_programming_normal_form_game_agent.LinearProgrammingNormalFormGameAgent(simulation_env_config: csle_common.dao.simulation_config.simulation_env_config.SimulationEnvConfig, experiment_config: csle_common.dao.training.experiment_config.ExperimentConfig, env: Optional[csle_common.dao.simulation_config.base_env.BaseEnv] = None, emulation_env_config: Union[None, csle_common.dao.emulation_config.emulation_env_config.EmulationEnvConfig] = None, training_job: Optional[csle_common.dao.jobs.training_job_config.TrainingJobConfig] = None, save_to_metastore: bool = True)[source]
Bases:
csle_agents.agents.base.base_agent.BaseAgent
Linear programming agent for normal-form games
- static compute_avg_metrics(metrics: Dict[str, List[Union[float, int]]]) Dict[str, Union[float, int]] [source]
Computes the average metrics of a dict with aggregated metrics
- Parameters
metrics – the dict with the aggregated metrics
- Returns
the average metrics
- compute_equilibrium_strategies_in_matrix_game(A: numpy.ndarray[Any, numpy.dtype[Any]], A1: numpy.ndarray[Any, numpy.dtype[Any]], A2: numpy.ndarray[Any, numpy.dtype[Any]]) Tuple[numpy.ndarray[Any, numpy.dtype[Any]], numpy.ndarray[Any, numpy.dtype[Any]], float] [source]
Computes equilibrium strategies in a matrix game
- Parameters
A – the matrix game
A1 – the action set of player 1 (the maximizer)
A2 – the action set of player 2 (the minimizer)
- Returns
the equilibrium strategy profile and the value
- compute_matrix_game_value(A: numpy.ndarray[Any, numpy.dtype[Any]], A1: numpy.ndarray[Any, numpy.dtype[Any]], A2: numpy.ndarray[Any, numpy.dtype[Any]], maximizer: bool = True) Tuple[Any, numpy.ndarray[Any, numpy.dtype[Any]]] [source]
Uses LP to compute the value of a a matrix game, also computes the maximin or minimax strategy
- Parameters
A – the matrix game
A1 – the action set of player 1
A2 – the action set of player 2
maximizer – boolean flag whether to compute the maximin strategy or minimax strategy
- Returns
(val(A), maximin or minimax strategy)
- linear_programming_normal_form(exp_result: csle_common.dao.training.experiment_result.ExperimentResult, seed: int, training_job: csle_common.dao.jobs.training_job_config.TrainingJobConfig, random_seeds: List[int]) csle_common.dao.training.experiment_result.ExperimentResult [source]
Runs the linear programming algorithm for normal-form games
- Parameters
exp_result – the experiment result object to store the result
seed – the seed
training_job – the training job config
random_seeds – list of seeds
- Returns
the updated experiment result and the trained policy
- static round_vec(vec) List[float] [source]
Rounds a vector to 3 decimals
- Parameters
vec – the vector to round
- Returns
the rounded vector
- train() csle_common.dao.training.experiment_execution.ExperimentExecution [source]
Performs the policy training for the given random seeds using linear programming
- Returns
the training metrics and the trained policies
- static update_metrics(metrics: Dict[str, List[Union[float, int]]], info: Dict[str, Union[float, int]]) Dict[str, List[Union[float, int]]] [source]
Update a dict with aggregated metrics using new information from the environment
- Parameters
metrics – the dict with the aggregated metrics
info – the new information
- Returns
the updated dict