csle_agents.agents.kiefer_wolfowitz package
Submodules
csle_agents.agents.kiefer_wolfowitz.kiefer_wolfowitz_agent module
- class csle_agents.agents.kiefer_wolfowitz.kiefer_wolfowitz_agent.KieferWolfowitzAgent(simulation_env_config: csle_common.dao.simulation_config.simulation_env_config.SimulationEnvConfig, emulation_env_config: Union[None, csle_common.dao.emulation_config.emulation_env_config.EmulationEnvConfig], experiment_config: csle_common.dao.training.experiment_config.ExperimentConfig, env: Optional[csle_common.dao.simulation_config.base_env.BaseEnv] = None, training_job: Optional[csle_common.dao.jobs.training_job_config.TrainingJobConfig] = None, save_to_metastore: bool = True)[source]
Bases:
csle_agents.agents.base.base_agent.BaseAgent
RL Agent implementing the Kiefer-Wolfowitz SA algorithm from the 50s
- batch_gradient(theta: List[float], delta: float, L: int, gradient_batch_size: int = 1)[source]
Computes a batch of gradients and returns the average
- Parameters
theta – the current parameter vector
ck – the perturbation step size
L – the total number of stops for the defender
gradient_batch_size – the number of gradients to include in the batch
- Returns
the average of the batch of gradients
- static compute_avg_metrics(metrics: Dict[str, List[Union[float, int]]]) Dict[str, Union[float, int]] [source]
Computes the average metrics of a dict with aggregated metrics
- Parameters
metrics – the dict with the aggregated metrics
- Returns
the average metrics
- estimate_gk(theta: List[float], delta: float, L: int)[source]
Estimate the gradient at iteration k of the Kiefer-Wolfowitz algorithm
- Parameters
theta – the current parameter vector
delta – the perturbation size
L – the total number of stops for the defender
- Returns
the estimated gradient
- eval_theta(policy: Union[csle_common.dao.training.multi_threshold_stopping_policy.MultiThresholdStoppingPolicy, csle_common.dao.training.linear_threshold_stopping_policy.LinearThresholdStoppingPolicy], max_steps: int = 200) Dict[str, Any] [source]
Evaluates a given threshold policy by running monte-carlo simulations
- Parameters
policy – the policy to evaluate
- Returns
the average metrics of the evaluation
- get_policy(theta: List[float], L: int) Union[csle_common.dao.training.multi_threshold_stopping_policy.MultiThresholdStoppingPolicy, csle_common.dao.training.linear_threshold_stopping_policy.LinearThresholdStoppingPolicy] [source]
Utility method for getting the policy of a given parameter vector
- Parameters
theta – the parameter vector
L – the number of parameters
- Returns
the policy
- static initial_theta(L: int) numpy.ndarray[Any, numpy.dtype[Any]] [source]
Initializes theta randomly
- Parameters
L – the dimension of theta
- Returns
the initialized theta vector
- kiefer_wolfowitz(exp_result: csle_common.dao.training.experiment_result.ExperimentResult, seed: int, training_job: csle_common.dao.jobs.training_job_config.TrainingJobConfig, random_seeds: List[int]) csle_common.dao.training.experiment_result.ExperimentResult [source]
Runs the Kiefer-Wolfowitz algorithm
- Parameters
exp_result – the experiment result object to store the result
seed – the seed
training_job – the training job config
random_seeds – list of seeds
- Returns
the updated experiment result and the trained policy
- static round_vec(vec) List[float] [source]
Rounds a vector to 3 decimals
- Parameters
vec – the vector to round
- Returns
the rounded vector
- train() csle_common.dao.training.experiment_execution.ExperimentExecution [source]
Performs the policy training for the given random seeds using Kiefer-Wolfowitz
- Returns
the training metrics and the trained policies
- static update_metrics(metrics: Dict[str, List[Union[float, int]]], info: Dict[str, Union[float, int]]) Dict[str, List[Union[float, int]]] [source]
Update a dict with aggregated metrics using new information from the environment
- Parameters
metrics – the dict with the aggregated metrics
info – the new information
- Returns
the updated dict