csle_agents.agents.c51_clean package
Submodules
csle_agents.agents.c51_clean.c51_clean_agent module
MIT License
Copyright (c) 2019 CleanRL developers https://github.com/vwxyzjn/cleanrl
- class csle_agents.agents.c51_clean.c51_clean_agent.C51CleanAgent(simulation_env_config: csle_common.dao.simulation_config.simulation_env_config.SimulationEnvConfig, emulation_env_config: Optional[csle_common.dao.emulation_config.emulation_env_config.EmulationEnvConfig], experiment_config: csle_common.dao.training.experiment_config.ExperimentConfig, training_job: Optional[csle_common.dao.jobs.training_job_config.TrainingJobConfig] = None, save_to_metastore: bool = True)[source]
Bases:
csle_agents.agents.base.base_agent.BaseAgent
A C51 agent using the implementation from CleanRL documentation
- hparam_names() List[str] [source]
Gets the hyperparameters
- Returns
a list with the hyperparameter names
- linear_schedule(duration: int, t: int) float [source]
Linear exploration rate schedule
- Parameters
duration – training duration
t – the time step of the training
- Returns
the updated exploration rate
- make_env()[source]
Helper function for creating an environment in training of the agent
- Returns
environment creating function
- run_c51(exp_result: csle_common.dao.training.experiment_result.ExperimentResult, seed: int) Tuple[csle_common.dao.training.experiment_result.ExperimentResult, csle_common.dao.simulation_config.base_env.BaseEnv, csle_common.models.q_network.QNetwork] [source]
Runs C51 with given seed
- Parameters
exp_result – the object to save the experiment results
seed – the random seed
- Retur
the updated experiment results, the environment and the trained model